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Abstract

The aim of this paper is to study extensions of Ry topo-
logical spaces of fuzzy sets. We also construct R1y principal
extensions of R1y topological spaces of fuzzy sets with the o-
graded trace system for each a in (0,1].

Keywords: Fuzzy topology, principal extension, remoted neighbourhood,
RTYy space, a-graded trace system.

1 Introduction

In crisp topology, extension theory is a well developed theory ( for references
please see [2], [3],[9], [12], [19] and [20]). In fuzzy topology only some particular
type of extensions such as compactifications, completions of fuzzy topological
spaces and fuzzy uniform spaces have been studied in [15], [23], [24]. The
fuzzyfication of general extension theory has been started by us in [5], where
a concept of fuzzyfication of extensions of topological spaces of fuzzy sets is
introduced and a method of construction of strongly Ty principal extension of
a strongly Tj topological space of fuzzy sets is provided.

In this paper we study extension theory and provide a method of construc-
tion of RTj principal extension of an RTj topological space of fuzzy sets with
the given a-graded trace system for each a € (0,1]. In this setting for each
a € (0,1], we find an RTj principal extension of an RTj topological space
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(X, u) with the given a-graded trace system.

Chang [4] introduced the notion of fuzzy topological spaces. In this context it
is worth noting that Chang’s fuzzy topology is in fact a crisp topology of fuzzy
sets. In this paper Chang’s fuzzy topology will be referred to as topology of
fuzzy sets. (X, u) will be called a topological space of fuzzy sets if X is a set
and v is a Chang topology on it.

In Section 2, some known definitions and known results are given which will
be used in the sequel.

In Section 3, a definition of RTj topological spaces of fuzzy sets is given. Some
results concerning principal extensions have been established.

In Section 4, using the concepts and results of Section 3, we present a con-
struction of RTy principal extension of RTj spaces with the given a-graded
trace system.

2 Preliminaries

Let X be a nonempty set and Y be a nonempty subset of X. For a fuzzy set
A of Y, its natural extension Ay~ x is defined by Ay x(z) = A(z) if z € Y and
Ayex(z) = 01if 2 € X —Y. When there is no chance of confusion, we shall
use (for simplicity) the same symbol A for Ay x.

In what follows I will stand for [0,1].

Definition 2.1 [1/] Let (X,u) be a topological space of fuzzy sets. Then
(X, u) is called Ty if for any pair of distinct points x,y € X, 3\ € u such that

A(@) # Aly)-

Definition 2.2 [/] Let (X,u) and (Y,v) be two topological spaces of fuzzy
sets. A mapping n : (X,u) — (Y,v) is said to be continuous if 7 (\) €
u, VA € v.

Definition 2.3 [5] Let (X,u) and (Y,v) be two topological spaces of fuzzy
sets. A mapping n : (X,u) — (Y,v) is said to be closed if n(u) € v',Vu € o/,
where u' and v’ are the families of closed sets in (X, u) and (Y,v) respectively.

Definition 2.4 [11] Let (X, u) and (Y,v) be two topological spaces of fuzzy
sets. A mapping 1 : (X,u) — (Y,v) is said to be open if n(\) € v,V € u.

Definition 2.5 [11] A mapping n : (X,u) — (Y,v) is said to be a homeo-
morphism if 0 is bijective, continuous and open (or closed).

Definition 2.6 [25] Let (X, u) be a topological space of fuzzy sets and A be
a fuzzy set in X. Then the closure of A in (X, u) is defined by
cyd=Npeu p> A}
When there is no chance of confusion regarding the role of u, cl,\ will simply
be denoted by cl.
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Theorem 2.7 [16, 17] Let (X,u) and (Y,v) be two topological spaces of
fuzzy sets andn : X — 'Y be a mapping. Thenn : (X,u) — (Y,v) is continuous
if and only if

n(cl, ) < clyn(N), VA € I¥,

Theorem 2.8 [5] For a bijective mappingn : X — Y,n: (X,u) — (Y,v)
18 homeomorphism if and only if

n(cl,\) = clyn(\), VA € IX.

Definition 2.9 [25] Let (X, u) be a topological space of fuzzy sets and A C
X. Let X be a fuzzy set in X. Then Ay is a fuzzy set in A defined by
Aa(x) = Az), Vo € A.
Define ua = {Aa : X € u}. Then it is easily verified that us is a topology of
fuzzy sets on A and (A,ua) is called a subspace of (X, u).

Definition 2.10 [1] A fuzzy stack S on X is a subset of I such that
A>pe S implies A € S.

Definition 2.11 [1] A fuzzy grill G on X is a fuzzy stack on X such that

(Z)GXgG;
() A\VpeG@=XeGorpuedG.

Remark 2.12 In this article fuzzy stacks and fuzzy grills as defined in [
definitions 2.10 and 2.11 | will be referred to as stacks of fuzzy sets and grills
of fuzzy sets respectively.

A grill of fuzzy sets G is called proper if G # ¢.

Definition 2.13 [5] A grill G of fuzzy sets on a topological space (X, u) is
said to be a c-grill of fuzzy sets if N € G = \e€ G, Ve IX.

Definition 2.14 Vf € IX, we define Z(f) to be the subset {x € X :
f(z) =0} of X which is called the zero-set of f in X.

Remark 2.15 Here it is important to note that the symbol Z(f) has been
used by Gillman and Jerison [13] for the zero-set of a real valued continuous
function f on a topological space X. In this article we use the same symbol for
the zero-set of an arbitrary element f € IX for an arbitrary set X.

Definition 2.16 [5] Let (X, u) and (Y,v) be two topological spaces of fuzzy
sets and n: X —Y be a mapping. Then (n, (Y,v)) is said to be an embedding
of (X, u) if n: (X, u) = (N(X),vyx)) is a homeomorphism.
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Definition 2.17 [5] Let (X, u) and (Y, v) be two topological spaces of fuzzy
sets and n : X — Y be a mapping. Then (n,(Y,v)) is said to be an exten-
sion of (X,u) if (n, (Y,v)) is an embedding and clyn(1x) = 1y or equivalently
clvin()g) = 1y, subject to the assumption that L,(X) is the fuzzy set in'Y satis-
fying 1,x)(y) = 1,Vy € n(X) and 1,x)(y) =0,Vy € Y —n(X).

Theorem 2.18 /5] Ifn: X — Y is one-one and (X,u) , (Y,v) are topolog-
ical spaces of fuzzy sets, then (n, (Y,v)) is an extension of (X,u) if and only if
(i) VA € I¥, 1(cl, ) = (clon(A)) An(Lx),
and
(ZZ) Clvﬁ(lx> = 1y.

Definition 2.19 [5] Let Ey = (n1, (Y1,v1)) and Ey = (12, (Y2, v2)) be two
extensions of (X,u). Then Ey is said to be greater than or equal to FEy (
written as Fy > FEy ) if there is a continuous function f from (Y1,v1) onto
(Y2, vq) such that fom = ns.

Definition 2.20 [5] The extension Ey = (n1, (Y1,v1)) is said to be equiva-
lent to the extension Ey = (n2, (Ya,v9)) (written as Ey ~ FEs) if there is a
homeomorphism h of (Y1,v1) onto (Ya,vs) such that horny = ns.

Definition 2.21 [5] Let (X, u) be a topological space of fuzzy sets and B be
a family of closed sets in (X,u). Then B is said to be a base for the closed
sets in (X,u) if each closed set in (X,u) can be expressed as the infimum of

a subfamily of B.

Theorem 2.22 [5] Let B C I* such that
(Z) OX e B,
(ZZ) V)\l,)\z eB= AV A € B.
Then B is a base for closed sets of some topology of fuzzy sets on X.

Definition 2.23 [5] An estension E = (n,(Y,v)) is said to be a principal
extension of (X, u) if {clyn(p) : p € I*} is a base for the closed sets in (Y, v).

Definition 2.24 [18] A fuzzy point in a set X is a mapping o, : X — 1,
where x € X, o € (0,1] defined by a,(x) = o and a,(y) =0 fory # x. Here x
18 the support of the fuzzy point a, and « its value.

A fuzzy point oy is said to belong to a fuzzy set X in X, denoted by €N if
a < \z).

Following [21] a definition of remoted neighbourhood of a fuzzy point is given
below:
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Definition 2.25 Let (X, u) be a topological space of fuzzy sets and o, be a
fuzzy point. Then X\ € v’ is called a remoted neighbourhood of au, if o, EN.
The set of all remoted neighbourhoods of a, is denoted by R, .

Definition 2.26 [5] A topological space (X, u) of fuzzy sets is called strongly
Ty if for each pair of distinct points x,y € X, either there is a A € u such that
A(x) >0 and A(y) = 0 or there is a u € u such that p(x) =0 and p(y) > 0.

3 Some Basic Results on Extensions of Topo-
logical Spaces of Fuzzy Sets

We begin the section with the following definition.

Definition 3.1 A topological space (X,u) of fuzzy sets is said to be RTy
if for each pair of distinct points x,y of X and for each o € (0,1], I\, €
Ra,, Ao € R, or g € Ry, fla & Ra,-

Example 3.2 Let X = {z,y} and u = {OX,lx}U{ {z/a,y/1} : a €
[0,1) } Then u' = {1X,OX}U{ {z/a,y/0} : a € (0, 1] }
Thus for each a € (0,1], 3 Ay = {z/a,y/0} € W' such that o > 0 = A\, (y) and
a<a=N(2). ie, oy ENg and 0 €N,. i€, Ay € Ry, and Ny & R, .
Therefore (X, u) is an RTy-topological space of fuzzy sets.

Theorem 3.3 If (X, u) is RTy, then it is strongly Tp.

Proof. Let (X,u) be RTy and z,y € X such that  # y. Then for each
a € (0,1], Iy € Ro,; Aa € Ra, or i € Ra,, fta € Ra,.

Therefore for each a € (0,1], 3 A\, € v such that a > A\, (z), 0 < A\, (y) or
3 pe € v such that a > pa(y), o < po(z).

Thus for a = 1,3 Ay € «/ such that \j(z) < 1, A\ (y) = 1 or 3 py € o such

that pi(y) <1, p(z) =1.

Taking A} = v and g} = § we have 3 vy € wu such that vy(z) > 0,7(y) = 0 or
3§ € u such that d(y) > 0,0(z) = 0.

Hence (X, u) is strongly Tp.

Note 3.4 But the converse of Theorem 3.3 is not true, which is justified by
the following Example.

Example 3.5 Let X = {z,y}, u= { Ox, 1x,{x/0.4,y/0} }
Then u' = { 1x,0x,{2/0.6,y/1} }
If a = 0.5, then R,, = R,,. Thus (X,u) is not RTy.
But it is clear that (X,u) is strongly Tp.
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Theorem 3.6 If (X, u) is RTy, then it is Tp.

Proof. Let (X,u) be RTy. Then it is strongly Ty and hence it is Tj.

Note 3.7 But the converse of the theorem is not true, which s justified by
the following example.

Example 3.8 Let X = {z,y,2}, u= { Ox,1x,{x/0.2,4/0.3,2/0.4} }
Therefore v = { 1x,0x,{x/0.8,4/0.7,2/0.6} }

If a« = 0.5, then R,, = Ra, = R,.. Therefore (X, u) is not RTj.
It is easy to check that (X, u) is Ty.

Definition 3.9 Let (X, u) be a topological space of fuzzy sets. Vx € X, Va €
(0, 1], define
Go, ={ N I¥:q.Ec }.

Theorem 3.10 Let (X, u) be a topological space of fuzzy sets. Then (X, u)
is RTy if and only if Vo,y € X,Gqo, = Ga, for some a € (0,1] imply x = y.

Proof. Let (X,u) be an RTj topological space of fuzzy sets. Let a € (0,1]
and z,y € X such that x # y.
Since(X, u) is Ry,

N e R,,, A€ Ra,, (1)
or

du € Ry, 1 & Ra,. (2)
Without any loss of generality we assume that (1) holds.
Then a, EX = cl)\, a,€X=cl\, since X is closed.
ie, A€ Gy, but A g G,,.
Thus G, # Ga, - Therefore the condition holds.
Conversely let the condition hold.
Let 2,y € X such that z # y and o € (0,1] .
Therefore G, # G, .
Thus there exists A\, € G,, such that A\, € G,, or there exists y, € G,, such
that p, & Ga,.
Therefore there exists A\, € I such that a,€cl\,, o, Ecl), or there exists
ta € I such that ayEclpin, oy Ecliiy.
Taking cl\, = 7, and cly, = 6, we have 3y, € Ra,, %% & Ra, or 30, €
Ro,, 00 & R,
Therefore (X, u) is RT,. This completes the proof.

Theorem 3.11 Let (X, u) be a topological space of fuzzy sets. ThenVx € X
and Yo € (0,1],Ga, is a proper c- grill of fuzzy sets in (X, u).
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Proof. Let # € X and a € (0,1]. Clearly Ox ¢ G,,.
Let A\, u € IX. Then
A>p € Gy, = az€clpy <= € G,
and
AV € Gy, = a€c(AV p) = a€(cIAV clu)
= az€cl\ or ayEcly = N\ € G,,, or i€ G,,.
Thus G,, is a grill of fuzzy sets on X.
Let A € IX. Then
X € G,, = azecl(cl\) = a,€cl\ = X € G,
Therefore G, is a c-grill of fuzzy sets in (X, u).
Clearly 1x € G,,. Therefore G, # ¢ and hence G, is proper.
Thus for each z € X and for each a € (0, 1], G,, is a proper c-grill of fuzzy
sets in (X, u).

Definition 3.12 Let E = (n, (Y,v)) be an extension of (X,u). Lety € Y
and a € (0,1]. Define the trace T, ) of the point o, with respect to the
extension E by

Tia,. ) = {) € I* - ay€clyn(N)}.
When there is no chance of confusion, we shall simply write T.,, for Tiq, k)
The a-graded trace system XE of the extension E is defined by
={T,,:yeY}.
Also define X(%J] by
Xy =1Tu, :y€Y,a € (0,1]}.

Theorem 3.13 Let E = (1, (Y,v)) be an exstension of (X,u). Then
(i) T,, is a proper c-grill of fuzzy sets in (X,u),Vy €Y, Va € (0,1].
(ii) Tn(az) =G,,,Vr e X, Vae (0, 1}.

Proof. (i) Let y € Y and a € (0,1]. Clearly Ox & T,
Let A\, u € I* such that A > pu € T,,. Then
ayecl,n(p) < clyn(X).
Therefore
a < clyn(p)(y) < con(MN)(y) = oy€clyn(N) = X e T,,,.
VA, pe IX,
AV € Ty, = ayeclyn(AV 1) = ayecl,(n(X) V n(p))
= ay€clyn(N) V clyn(p) = a < clyn(N)(y) V clon(p)(y)
= a < clyn(A)(y) or a < clyn(p)(y)
= ay€clyn(N) or ay€clyn(p) = N €T, or peT,,
Also for A € IX,
cly\ € T,, = ayeclyn(cl,N)
= a < cyn(c M) (y) < cly(cl, ()\))(y)
since 1(cl,\) = (clyn(\) An(1x)
= a < cdy,n(\)(y) = ayec,n(N) =
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Clearly 1x € T,,. Therefore Ti, # ¢.
Thus Ty, is a proper c-grill of fuzzy sets in (X, u), for each y € Y and for each
a € (0,1].
(ii) Let 2 € X and o € (0,1]. Let A € I*. Then
A € T,y € n(aw)Eclyn(N) € oy Eclyn(N)
& a < (M) n() & a < () A L))
< a < (cdon(A) An(lx))(n(@)) < o < nlcdA) (@)
< a < c, () ( since 7 is one-one )& A € G, .
Thus Tn(ax) = Gam.

Theorem 3.14 If £y and Ey be two equivalent extensions of (X, u), then
XE = X2 for each a € (0,1] and hence X(Eo’ll] = X(]ffl].

Proof. Let Ey = (m1, (Y1,v1)) and Ey = (12, (Y2,v9)) be two equivalent exten-
sions of (X, u).
Then 3 a homeomorphism A of (Y7, v1) onto (Ya,ve) such that hormy = 7.
Let y € Yi,a € (0,1] and A € IX. Then
A € Ta, By & ay€cly,m(A) < h(oy)Eh(clo,ni(N))
& apgy)Ecly,h(m(N))
& ap(y) Ecly,m2(N), since h(ni (X)) = hom(X) = n2(N).
SN E T(a(h(y),Eg)-
Thus T(O%El) = T(ah(y)7E2).
Therefore X2 = {T(a, 5, 1 y € Y1}
= {Tlan, 1) Y € Y1}
= {T(a,.E2) : Y € Y2}, because Yy = {h(y) : y € Y1}.
= X Vae (0,1)].
Also
Xy = ATy -y € V1,00 € (0,1]}
= {Tlap,B>) * Y € Y1, € (0,1]}
~{Tloy -9 € Yo € (0.1)
= X0
Note 3.15 FEzxzample is given below to show that the converse of Theorem
3.14 does not hold.

Example 3.16 Let X,Y, Z be three infinite sets such that X C'Y C Z and
| X| < |Y]| < |Z|, where | X| denotes the cardinal number of the set X.
Let u C IZ be defined by
VYA € IZ, X € uif and only if \ = 0z or Z(\) is finite.
Then it is clear that u is a topology of fuzzy sets on Z.
Let (X,ux) and (Y,uy) be subspaces of (Z,u). Leti: X — Z be the inclusion
map. Let i also denote the inclusion map of X into Y.
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Obviously Ey = (i,(Z,u)) is an extension of (X,ux) and Ey = (i, (Y,uy)) is
also an extension of (X, ux).
Note that for each x € X and Yo € (0,1], Tii(an),) = Gaw = Tlitan),E2)s -6,
Tion.0) = Gay = Tiay )
Let G* = {\ € I : XNa) = 1 for infinitely many points a of X }.
Then it is easy to check that Yo € (0,1],
T(QZ,EI) = G*, Ve Z —X and T(ay,Ez) = G*, Vy ey — X.
Hence X = X2 Vo € (0,1] and hence X(b(;h] = X(Eofl}.
But Ey % Es, as |Y| < |Z].

Theorem 3.17 For any extension E = (n, (Y,v)) of (X,u) and Vy,z €Y,
Ga, C Go, implies T, C T, for each a € (0, 1].

Proof. Let a € (0,1] and y, z € Y be such that G,, C G,,.

Then Vu € I¥,
p e Ty, = ayeclyn(p) = n(pn) € Go, = n(p) € Ga,, since Go, C G,
= a.€clyn(p) = p € T,..

Thus T, C Ty..

Note 3.18 An example is given below to show that the converse of the above
theorem s not true.

Example 3.19 Let Y be an infinite set. Let v C IY be defined by

VaeI¥. Newv ifand only if \= 0y or Z()\) is finite.
Clearly v is a topology of fuzzy sets on'Y .
Let X be an infinite set such that X CY and |Y — X|>2andi: X —Y be
the inclusion map. Then it is easy to check that (i,(Y,v)) is an extension of
(X, U)().
Let y,z(#y) € Y — X. Then it is clear that

To, ={X € I : Xa) =1 for infinitely many points a of X }

=T,., Yae(0,1].

Choose \, u € IV such that

AMy) = 0.5, A(2) =0.6, u(y) =0.6, pu(z) =0.3
and both the sets {a € Y : XMa) =1} and {a € Y : u(a) = 1} are finite.
Then it is clear that A\ € Gos,, A € Gog, and p € Gog,, p & Gos, -
Thus Gog, ¢ Go.ﬁy and Go.ﬁy Z Gos. -

However the following result holds.

Theorem 3.20 If (1, (Y,v)) is a principal extension of (X, u), then Vy, z €
Y

Y

T,, C T, if and only if Gy, C Ga, for each a € (0, 1].
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Proof. ‘If part’ has already been proved above.
Let o € (0,1] and y, z € Y such that T,, C T,..
Let A € I such that A € G,,. Then a,€cl,A.
Since { cl,n(p) : p € I } is a base for the closed sets in (Y, v),
ay,€ A elyn(p) s p€I*, clyn(p) > X}
Thus
o, € clyn(p), Yu € I* with cl,n(p) > A,
and hence
pe Ty, Yo e I* with clyn(p) > A
Since T, C To., p€ T, Vp € I* with clyn(p) > A, which implies that
a.€ AN clyn(p) s p e I, cynp) > X}
e, a € cl,\ ie, X€EG,..
Hence G, C Ga,.
The following corollary is an easy consequence of the above theorem.

Corollary 3.21 If (n, (Y,v)) is a principal extension of (X, u), then Vy, z €
Y, To, =T, if and only if Go, = Ga, for each o € (0,1].

Theorem 3.22 If (n,(Y,v)) is a principal extension of (X,u), then (Y,v)
1s RTy if and only if
Vy,z €Y, T,, =T, for someac (0,1 =y= =z

Proof. Let (Y,v) be RT}. Lety,z € Y such that T;,, = T, for some a € (0, 1].
Thus G, = G, and hence y = z ( see Theorem 3.10 ).

Conversely suppose that the condition holds.

ie,Vy,zeY, T, =T, for some a € (0,1] implies y = z.

Let G, = G, for some a € (0,1]. Therefore by the above corollary we have
T, = T.. and hence by the given condition we have y = 2.

Hence (Y, v) is RTj (see Theorem 3.10).

4 Construction of R1j Principal Extension of
an RT; Topological Space with the Given «a-
graded Trace System

In this section (X, u) will be an RTj topological space of fuzzy sets and for
each a € (0, 1], X be a collection of proper c-grills of fuzzy sets in (X, u) such
that G,, € X,Vor € X.
Let a € (0, 1]. Define,

fa: X = X2 by folz) = Gq,, Vo € X.
In view of Theorem 3.10, it follows that f, is one-one.
VA € IX, | define \¢ : X} — I by the following :
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X (Ga,) = cluA\(x), Ve € X
and for G € X — {G,, : v € X},

e 1 it AeG
Aa(G)_{o if A¢gG.

Let \,pu€I*X. Vo e X

AV )e(Ga,) = cly(AV p)(x) = (clyA V clyp) () = cly () V clypu(x)

= Na(Go) V g (Ga,) = (AL V 1) (Ga,)-
Also for G € X} —{G,, 1 v € X},

AV 1)o(G) = (A V pg)(G)

since AV u € G if and only if A € G or € G.

Thus (AV )6 = XV ue, VA, u € I, Also (0x)¢ = Ox.
Thus {)\¢ : A € I} is a base for the closed sets of a topology w, (say) of fuzzy
sets on X.

Theorem 4.1 Let o € (0,1 and (X, u), (X}, w,) and the other symbols
used below be same as above. Then
() YA\ p € IM A< = N, < s,
(ii) YA € T (cl,\)S = NS
(iii) YA, p € TX, fo(N) < pé & clu A < clypu.
(iv) VA € IX cly, fa(X) = XC.
(v) el fa(lx) = 1x;. ~
(vi) YA € TX, ( cly, fa(N) ) A follx) = falcluN).

Proof. Let a € (0, 1].
(i) VA, pu € I,

A<p=2(G) < ps(G),VG € Xk = X\ < ps.
(ii) Let A € I*. Then

(cluN)S(Ga,) = cly(clyN) () = clyA(z) = A (Ga,), Ve € X
and clearly

(cl,N)S(G) =X (G) it G e X —{G,, 1 x € X},

since G is a c-grill of fuzzy sets in X.

Thus (cl,\)4(G) = X (G), VG € XE.
Hence (cl,\)¢ = X6,V € I,
(iii) For A\, u € I*X,

faN) < 1 & fo(N(G) < g (G), VG € X
< fa(M)(Ga,) < pe(Ga,) Vo € X

(M (fal@)) < clup(z), Vo € X
& Mx) < cyp(x), VYo € X, since f, is one-one.

& cly A < clyp.

(iv) VA € T¥,
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Clg fa(N) = A o 1, > fa(N), p € 1%}, since {ug, : p € 1%}
is a base for the closed sets in (X}, w,).
= AN{ u& el A\ < clyp,p € X}
= N{ (clyp) @ el X < clyp, pp € X}
= (cluA)g,
= ).
(V) clu, fa(lx) = (1x)2 = 1xz, since (1x)2(G) =1 = 1x:(G) VG € X}.
(vi) Let A € I*. Then Vz € X,
(( e faN) ) A fal1x))(Ga,) = (Ao A falix))(Ga,)
= cl A\(z) Al x(2) = c Mx) = folcl ) (falz))( since f, is one-one)
= fa(clud)(Ga,)-
Also if G € X — {G,, : v € X}, then
((Clu fa) ) A Fa(10))(G) = (3 A fal16) ) (@) = X5(G) A0
= 0= fulcN)(G).
Thus ( clu, fa(A) ) A fa(lx) = fa(cluA).
This completes the proof.

Remark 4.2 Since for each a € (0,1], : X — X is one-one and
VA € 1%, ( cly, fa(N) ) A fo(lx) = fa(clu)) and clw& fo(lx) = 1x:, it follows
that (fo, (X2, wy)) is an extension of (X, u) for each a € (0,1].

Since for each a € (0,1], { X\¢ : X € I*} is a base for the closed sets of
(X2 we) and cly, fo(A) = X,V € IX, it follows that (fa, (X}, w.)) is a
principal extension of (X, u) for each o € (0, 1].
Note that VG, € X,
TOéG = { HE IX O‘G%e Clu, fa(p) }
={u € . ( cluofa(p) (Ga,) > }
={pel”:u(Ga,) >}
:{MEIX:cluu(x)za}
={pel*:a,€clyu}
=G,,.
Also if G € Xt —{G,, : x € X}, then
Tog ={n € I* : p3(G) > a}
={ne " p5(G) =1}
={pel*:uedG}
=G.
Thus T,, = G, VG € X].
Therefore X[ is the a-graded trace system of the extension (fo, (X5, wy)).
Also for each o € (0, 1] we have,
VGl, G2 € X:UTQGI = Tag2 = G1 = GQ,
and hence (X, w,) is RTy for each a € (0, 1].
Thus (fa, (X, wa)) is an RTy principal extension of (X, u) with the given a-
graded trace system for each o € (0,1].
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Notation 4.3 The extension (fa, (X}, wy)) will be denoted by Eo(X}).
Thus XP~(Xo) = X7

5 Future Work

In [6], we introduced T} principal extensions of a Ty-topological spaces of fuzzy
sets. In [8], we defined fuzzy conjoint compactness and fuzzy linkage compact-
ness and established conditions on the trace systems which would ensure the
fuzzy conjoint compactness and fuzzy linkage compactness of the Ty principal
fuzzy extensions. In [8], we also introduced basic fuzzy proximities, Lodato
fuzzy proximities and eventually proved a theorem which establishes that there
is a bijection between a class of Lodato fuzzy proximities compatible with a
given strongly 71- topological space of fuzzy sets (X, ¢) and the class of strongly
T, principal Type-II fuzzy linkage compactifications of (X, ¢). Our aim is to
achieve the similar result mentioned above in the RTj spaces.
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