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Abstract 

     The crossing number of a graph G is the minimum number of 
crossings of its edges among the drawings of G in the plane and is 
denoted by cr(G). Zarankiewicz conjectured that the crossing 
number of the complete bipartite graph Km,n equals . 
This conjecture has been verified by Kleitman for min {m, n} ≤ 6. 
Using this result, we give the exact values of crossing number of the 
join of a certain graph G on six vertices with a path and a cycle on n 
vertices.  

     Keywords: Crossing Number, Good drawing of a graph, Union and join 
of graphs 

1      Introduction 

Let G(V, E) be a simple connected undirected graph with vertex set V and edge set 

E. A drawing D of a graph G is a representation of G in the Euclidean plane where 

vertices are represented by distinct points and edges by simple polygonal arcs 

joining the points that correspond to their end vertices. A drawing D is good or 
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clean if no edge crosses itself, no pair of adjacent edges cross, two edges cross at 

most once and no more than two edges cross at one point. 

The crossing number of a graph G is the smallest number of edge crossings in any 

drawing of G and it is denoted by cr(G). It is well known that the crossing number 

of a graph is attained only in good drawings of the graph. So, we always assume 

that all drawings throughout this paper are good. Further it is clear that G is planar 

if and only if cr(G) = 0. 

Crossing number minimization is one of the fundamental optimization problems 

in the sense that it is related to various other widely used notions. There are 

numerous applications, most notably those in VLSI design and in combinatorial 

geometry [1, 16, 19]. Researchers in computer science focus their attention to this 

area of graph theory as the study of crossing numbers of graphs finds applications 

in network design and circuit layout. It is also an important measure of non-

planarity of a graph. 

Crossing number problems were introduced by Turán [18], who first inquired 

about the crossing number of the complete bipartite graph Km,n. Zarankiewicz 

devised a natural drawing of Km,n with  crossings, but his 

conjecture [20], that such a drawing is the best possible, is still open [14]. Garey 

and Johnson [4] proved that computing the crossing number is NP-complete. The 

crossing number problem for generalized Petersen graphs has been investigated in 

[3] and [17]. Determining the exact values of the crossing number for graphs is a 

challenging problem. Join and Cartesian products of graphs are two graph families 

for which exact results concerning the crossing numbers are known [14]. 

Let G1(V1, E1) and G2(V2, E2) be any two graphs. Their union, denoted by G1 ∪ G2 

is the graph (V1 ∪ V2, E1 ∪ E2). For any two vertex disjoint graphs G1 and G2, their 

join, denoted by G1 + G2, is obtained from G1 ∪ G2 by joining every vertex of G1 

to every vertex of G2. When |V(G1)| = m and |V(G2)| = n, the edge set of G1 + G2 is 

the union of disjoint edge sets of G1 and G2 and that of the complete bipartite 

graph Km,n. The conjecture of Zarankiewicz [20] has been verified by Kleitman [5] 

for min {m, n} ≤ 6. Klešč [10] has given the exact values of the crossing number 

for join of two paths, join of two cycles and for join of a path and a cycle. In 

addition, he has given the exact values for crossing number of G + Pn and G + Cn 

for all graphs G of order at most four [6]. He has also obtained this result for some 

of the graphs on five and six vertices [7 – 15].  

Let D be a good drawing of a graph G. We denote the number of crossings in D 

by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We denote the number 

of crossings between the edges of Gi and the edges of Gj by crD(Gi, Gj). 
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 Lemma 1 [5] Let Gi, Gj and Gk be mutually edge-disjoint subgraphs of G. Then 

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj)                                     (1) 

crD(Gi ∪ Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk)                                        (2) 

The following result on the crossing number of a complete bipartite graph Km,n is 

due to Kleitman. 

     Lemma 2 [5] For min {m, n} ≤ 6, cr(Km,n) = Z(m, n) where 

. 

     Theorem 1 [2] (Euler’s Formula) If G is connected plane graph, then v – ∊ + 

ϕ = 2, where v is the number of vertices, ∊ is the number of edges and ϕ is the 

number of faces in G. 

Corollary 2 [2] If G is a connected plane graph with girth g, the gϕ ≤ 2∊. 

Let G be the graph with vertex set {a, b, c, d, e, f} and edge set {ab, ac, ae, af, bc, 

bf, cd, ce, de, ef} as shown in Fig.1(i). It consists of a 6-cycle C6(G) = abcdefa, 

five 3-cycles, abca, afea, abfa, cedc, acea, and one 4-cycle, bcefb. The graph in 

Fig.1(ii) is a good drawing of G.  

In this paper, we give the exact values of crossing number of the join of the graph 

G with a path and a cycle on n vertices. We follow the notations and proof 

techniques given by Klešč et al. [13, 14] in our paper. As mentioned there the 

term ″region″ in a nonplanar drawing is to be understood in the sense crossings 

are vertices of the ″map″. We consider first the join of G with the discrete graph 

on n vertices. 
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Fig. 1: (i). A graph G on six vertices (ii). A good drawing of G (iii). A subdivision 

of K₅ in G + K₁ 
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2      The Crossing Number of G + nK1 

Zarankiewicz [20] gave a drawing of Km,n which meant that cr(Km,n) ≤ Z(m, n). 

The graph Gn = G + nK1 consists of one copy of the graph G and n vertices t1, t2 

… tn of nK1, where each vertex ti, i = 1, 2 … n, is adjacent to every vertex of G. 

Place  of these vertices to the negative position on the x-axis,  of them to the 

positive position on the x-axis, 3 vertices of G to the negative position on y-axis, 3 

of them to the positive position on the y-axis and draw 6n edges by straight line 

segments to obtain a drawing of K6,n. Let Ti, 1 ≤ i ≤ n, denote the subgraph 

induced by the six edges incident with the vertex ti. Then 

Gn = G + nK1 = G ∪ K6, n = G ∪ ( ). 

     Lemma 3 cr(G + K1) = 1. 

Proof. It is clear from Fig.1(iii) that crD(G + K1) ≤ 1. Further G + K1 contains a 

subdivision of K5 and hence crD(G + K1) ≥ 1. 
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Fig. 2: Possible diagrams of G+2K₁ 

     Lemma 4 cr(G + 2K1) = 4. 

Proof. In the graph G + 2K1, let r be the smallest nonnegative integer such that 

the removal of some r edges from the graph G + 2K1 results in a planar subgraph 

(G + 2K1)r of (G + 2K1). This graph is a connected spanning subgraph of G + 2K1 

with eight vertices and 22 – r edges. By Theorem 1, ϕ = 16 – r. Since (G + 2K1)r 

has girth at least three, we have by Corollary 2, 3(16 – r) ≤ 2(22 – r), or 4 ≤ r. 

Thus crD(G + 2K1) ≥ 4. It follows from the drawing in Fig. 2 that crD(G + 2K1) ≤ 4 

and therefore cr(G + 2K1) = 4. 

     Lemma 5 Let D be a good drawing of G + nK1, n > 1, in which there are two 

different subgraphs Ti and Tj with crD (Ti, Tj) = 0. Then there are at least Z(6, n) + 

n + 2  crossings in D. 
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Proof. We use induction on n for the proof. By Lemma 4, the result is true for n = 

2. Let n ≥ 3 and without loss of generality let crD (Tn – 1, Tn) = 0. Assume further 

that for every integer s < n, any good drawing of G + sK1 has at least Z(6, s) + s + 

2 crossings. If possible let D be a good drawing Gn = G + nK1 with less than 

Z(6, n) + n + 2  crossings. The subdrawing of D induced by Tn – 1 ∪ Tn with 

crD(Tn – 1, Tn) = 0 divides the plane into several regions such that the boundary of 

each region has exactly two vertices of G. Hence, in D, the edges of G cross the 

edges of Tn – 1 ∪ Tn at least four times; that is crD(G, Tn – 1 ∪ Tn) ≥ 4. Further, since 

cr(K6, 3) = 6, we have crD(Tk, Tn – 1 ∪ Tn) ≥ 6, for k = 1, 2 … n – 2. Again, since Gn 

= Gn – 2 ∪ (Tn – 1 ∪ Tn), we have  

crD(Gn) = crD(Gn – 2 ∪ (Tn – 1 ∪ Tn))  

  = crD(Gn – 2) + crD(Tn – 1 ∪ Tn) + crD(Gn – 2, T
n – 1 ∪ Tn), by Lemma 1 

  ≥ Z(6, n – 2) + (n – 2) + 2  + 0 + crD(Gn – 2, T
n – 1 ∪ Tn), by hypothesis  

  = Z(6, n – 2) + (n – 2) +2 + crD(G ∪ , Tn – 1 ∪ Tn) 

  = Z(6, n – 2) + (n – 2) +2 + crD(G, Tn – 1 ∪ Tn) 

+ crD ( , Tn – 1 ∪ Tn), by Lemma 1 

≥ Z(6, n – 2) + (n – 2) + 2  + 4 + 6(n – 2) 

= 6  + n + 2  
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Fig. 3: The crossing of the graph G  Ti with Tj 
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contrary to assumption that G has less than Z(6, n) + n + 2  crossings. 

     Lemma 6 Let D be a good drawing of G + nK1, n ≥ 3, in which some subgraph 

G  Ti is crossed at least seven times by every subgraph Tj, j = 1, 2, … n, j ≠ i. 

Then there are at least Z (6, n) + n + 2  crossings in D.  

Proof. Clearly G + nK1 = K6,n – 1 ∪ (G ∪ Ti) and K6,n – 1 contains n – 1 subgraphs 

Tj, j ≠ i. Consequently  

crD(G + nK1) = crD(K6,n – 1) + crD(G ∪ Ti) + crD(K6,n – 1, G ∪ Ti) 

 ≥ Z(6, n – 1) + 1 + 7(n – 1), by assumption, see Fig. 3 

 = 6  + 7n – 6 

 = Z(6, n) + n + 6  

 ≥ Z(6, n) + n + 2  

We are now ready to prove the main theorem of this section. 
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Fig. 4: A good drawing of G + nK1 

     Theorem 3 cr(G + nK1) = Z(6, n) + n + 2  for n ≥ 1. 

Proof. The theorem is true for n = 1 and n = 2. For n ≥ 3, let D be good drawing 

of Gn = G + n K1 as in Fig. 4. Apart from the crossings of K6,n, the edges ce, ca, ae 

and bf contribute for the crossing number of D. The first three edges contribute  

crossings each and the edge bf contributes  crossings to the crossing number of 
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D. Hence it follows from Fig. 4 that crD(Gn) ≤ Z(6, n) + n + 2 . Consider a good 

drawing D of Gn with less than Z(6, n) + n + 2  crossings. Since  

crD(Gn) = cr(G ∪ K6,n) 

= crD(G) + crD(K6,n) + crD(G, K6,n) 

     ≥ crD(G) + Z(6,n) + crD(G, K6,n) 

our assumption on D implies that  

                                       crD(G) + crD(G, K6,n) < n + 2 .                                    (3) 

Hence the edges of G are crossed less than n + 2  times in D. This implies that, 

in D, there is at least one subgraph Ti which does not cross G. Without loss of 

generality let crD(G, Tn) = 0. 

The choice of D along with Lemma 5 implies that crD(Ti, Tj) ≠ 0 for all i, j = 1, 2 

… n, i ≠ j. Further it follows from Lemma 6 that crD(G ∪ Tn, Ti) ≤ 6 for at least 

one subgraph Ti, i ∊ {1, 2…n – 1}. 
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Fig. 5: (i) A subdrawing of G ∪ Tn in which the edges of the 6-cycle do not cross 

each other. (ii). A subdrawing of C6(G) ∪ Tn in which the edges of the 6-cycle 

cross each other. (iii). A subdrawing of G ∪ Tn in which the edges of the 6-cycle 

cross each other. 

Consider the subdrawing D* of G ∪ Tn induced by D. We consider two cases. 

Case 1: The edges of the 6-cycle C6(G) do not cross each other in D*. 

The cycle C6(G) determines two regions in D*, say the interior and the exterior of 

C6(G). Since crD(G, Tn) = 0, we assume without loss of generality that all the 

edges of Tn lie in, say, the exterior of C6(G). The remaining edges of G not 
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belonging to C6(G) are placed in the interior of C6(G). One such a drawing is 

shown in Fig. 5.  

It is easy to see that if some vertex ti, i = 1, 2 … n – 1, is placed inside any of the 

3-cycles abca, afea, cedc, and abfa, then the edges of Ti cross the edges of G at 

least six times. Since crD(Ti, Tj) ≠ 0 for all i, j = 1, 2…n, i ≠ j, this means that 

crD(G ∪ Tn, Ti) ≥ 7. If ti is placed inside the 3-cycle acea or the 4-cycle bcefb, then 

the edges of Ti cross the edges of G at least four times; consequently crD(G ∪ Tn, 

Ti) ≥ 5 . Moreover if ti is placed in a region outside G, then crD(G ∪ Tn, Ti) ≥ 10 

and if none of the edges of Ti crosses G, then crD(G ∪ Tn, Ti) ≥ 6. 

Let r be the number of vertices ti, i = 1, 2…n – 1, which are placed, in D, in the 

region bounded by the triangles abca, afea, cedc, and abfa for which crD(G ∪ Tn, 

Ti) ≥ 7. Since there is a subgraph Ti with crD(G ∪ Tn, Ti) ≤ 6, we have r ≥ 1. Let s 

be number of vertices ti, i = 1, 2 … n – 1, which are placed, in D, in the region 

bounded by 3-cycle acea or the 4-cycle bcefb, for which crD(G ∪ Tn, Ti) ≥ 5. Thus 

7r + 5s < n + 2 . 

crD(G + nK1) = crD(K6,n – 1) + crD(G ∪ Tn) + crD(K6,n – 1, G ∪ Tn) 

 ≥ Z(6, n – 1) + 7r + 5s + 6(n – r – s – 1) 

 = Z(6, n) + r – s + 6  

Since D is a good drawing of Gn with less than Z(6, n) + n + 2  crossings, we 

have Z(6, n) + n + 2  > Z(6, n) + r – s + 6 . This gives r – s < n – 4  which 

together with the condition 7r + 5s < n + 2  results in r <  – . A 

contradiction to the fact that r > 1. 

Case 2: The edges of the 6-cycle C6(G) cross each other in D*. 

We know that there is a subgraph Ti such that and crD(G ∪ Tn, Ti) ≤ 6 and that 

crD(Tn, Ti) ≠ 0 for i, 1 ≤ i ≤ n – 1. Thus crD(G ∪ Tn, Ti) ≤ 6 means that crD(C6 (G), 

Ti) ≤ 5. Since crD(C6(G), Tn) = 0, the vertex tn is placed in a region with all six 

vertices of C6(G) on its boundary and the conditions crD(C6(G), Ti) ≤ 5 means that 

in the subdrawing of C6(G) ∪ Tn there is a region with at least 2 vertices on its 
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boundary. When the edges of G are included this gives crD(G ∪ Tn, Ti) ≥ 6, a 

contradiction.  

So there is no good drawing of Gn with less than Z(6, n) + n + 2  crossings. 

3      Crossing number of G + Pn and G + Cn 

The graph G + Pn contains G + nK1 as a subgraph. For the subgraphs of G + Pn 

which are also subgraphs of G + nK1 we use the same notation as above. Let Pn
* 

denote the path on n vertices of G + Pn not belonging to the subgraph G. One can 

easily see that G + Pn = G ∪ K6,n ∪ Pn
* 

It is clear that, for n = 1, the graph G + P1 is isomorphic to G + K1 and hence 

crD(G + P1) = 1. 
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Fig. 6: The graph G + Pn 

     Theorem 4 cr(G + Pn) = Z(6, n) + n + 2  + 2, for n ≥ 1. 

Proof. It is clear from Fig. 6 that crD(G + Pn) ≤ Z(6, n) + n + 2  + 2. Suppose 

crD(G + Pn) < Z(6, n) + n + 2  + 2. By removing the edge tn – 1tn which 

contributes 2 crossings, the resulting graph (G + Pn)r will have fewer than Z(6, n) 

+ n + 2  crossings. Also, G + nK1 ⊂ (G + Pn)r and 

crD(G + nK1) < crD(G + Pn)r 

< Z(6, n) + n + 2  

This contradicts Theorem 3. 



 

 

 

 

 

 

 

Vijaya N et al.                                                                                                        50 

c

a

f

e

d

b

t1 t2tn-1

tn

 

Fig. 7: The graph G + Cn 

Similarly we have the following result whose proof is omitted. 

       Theorem 5 cr(G + Cn) = Z(6, n) + n + 2  + 5 

4      Conclusion 

In this paper we have obtained the exact values of crossing number of G + nK1, G 

+ Pn and G + Cn, where G is a graph on six vertices as shown in Fig.1(i). There 

are other graphs on 6 vertices for which the problem remains open. 
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