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Abstract 

In this study, we propose a neural encoding method for fish 

motion learning using spiking neural network. The network is trained to 

associate a particular motion to its target response using our initially 

developed reward-based learning algorithm. For the encoding purposes, 

we use a recurrent neural network with sparse and random connection 

consisting of 1000 spiking neurons. Each point in a motion is 

represented by a group of neurons, in which a sequence of group 

stimulations forms a motion trajectory. The sequence is associated to a 

target response, represented by a group of response neurons. For this 

study, there are two groups of competing response neurons. In each 

learning trial, the sequence is activated and the network is rewarded or 

penalised depending on the winning response. The learning follows a 

simple and natural protocol implemented in a noisy and dynamic setting. 

Based on the experiment findings, the encoding method of fish motion 

trajectory seems feasible to be coupled with the reward based learning 

shown by the sequence recognition performance. Moreover, this is 

among the pioneer studies that implement motion trajectory learning 

using spiking neural network in a reward-based paradigm.  
 

 

Keywords: motion trajectory, spiking neural network, fish motion learning, 

reward-based learning. 
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1 Introduction 
 

Motion trajectory is a track of moving object that follows through a space over 

time. Predicting the motion trajectory implies forecasting the moving object to 

meet the movement data such as time, location, speed, acceleration and position 

for control, capture or observation purpose (Payeur, Le-Huy, & Gosselin, 1995). 

Fish motion trajectory analysis has been studied for different solutions, for 

example anomalous fish trajectories (Beyan & Fisher, 2013; Spmapinato & 

Palazzo, 2012), water quality(Ma, Tsai, & Liu, 2010), and normal fish trajectories 

and electric fish (Fujita, 2012). The study of fish behaviour is a fundamental 

research area in marine biology to understand various environmental effects such 

as water quality, pollution, climate change and fish behavior (Beyan & Fisher, 

2012).  

 

For learning the fish motion patterns, sigmoidal neural network (NN) with 

Backpropagation (BP) learning algorithm has been a popular technique used in 

which a set up network is trained with a set of motions in classifying each motion 

into a particular class of behaviour. Even though, many studies have proven the 

success of NN with BP in predicting motions, learning the spatial and temporal 

features of the motions is complex and challenging. This is due to the absence of 

spatio-temporal encoding functionalities in the sigmoidal neural net. Thus 

learning requires an additional mechanism that sometimes may involve massive 

computation.  

  

Realising the needs to learning of complex data, in this study we propose a 

spiking neural network for fish motion learning. The new class of computational 

models uses time as a resource for coding information, computationally more 

powerful than the conventional models. For a complex data learning which 

requires hundreds of hidden units on a sigmoidal neural net could be computed by 

a single neuron in an SNN. In comparison to the conventional McCulloch Pitts-

based models, SNNs have more advantages for biological reasonable values of its 

function parameters, and they also boast off fast and efficient computation where 

the timing of the input signals carries important information (Bi & Poo, 1998; Yu, 

Tang, Tan, & Yu, 2014). However, information encoding is a major challenge as 

the tradeoff for its realism. SNN is complex and dynamic depending on the choice 

of spiking model, network topology, and spike coding. Hence, there are a number 

of SNN models emerged today with variety of computational complexity and 

plausibility levels.  

 

For this study, we propose a fish motion encoding and learning using a spiking 

neural network using real fish motion data obtained from fish4Knowledge (Beyan 

& Fisher, 2012). The motion trajectories in this dataset are classified into normal 

and abnormal trajectories. In particular, the spiking neural network is used to learn 

normal fish trajectories that hold usual behaviour of fish. The contribution of this 
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study can be attributed to the approaches implemented to encode the feature of the 

spatio-temporal properties of fish motion using firing rate and spike timings and 

to train the network for sequence learning in a reward-based paradigm.  

 

2 Background 
 

The advent of technology in electrophysiological and neuroimaging studies to 

delineate activity in brain have allowed better investigations, recordings and 

simulations of brain activity projecting the structural and functional behaviour of 

it.  Looking closely into the brain, it consists of a large number of neurons. These 

neurons form connections with each other to compose a network and interact 

among them by receiving stimuli (input) or triggering actions (output). 

 

The cortical neuronal network is composed of pyramidal cells (80%) and 

interneurons (20%) (Abeles, 1991) . Each neuron receives excitatory synaptic 

contacts from pyramidal cells and inhibitory contacts from interneurons. In most 

parts of the brain, neuron connectivity is found to be sparse e.g., (Capaday et al., 

2009; Grillner, Markram, De Schutter, Silberberg, & LeBeau, 2005)Pyramidal 

cells send connections to other pyramidal cells through AMPA (α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartic 

acid) synapses. Interneurons send GABAergic (gamma-aminobutyric acid) 

connections to pyramidal cells and other interneurons. AMPA and NMDA 

receptors play a vital role in the mediation of excitatory synaptic transmissions, 

meanwhile GABA is the inhibitory neurotransmitter in the brain. These 

connections send to the network all the information (stimuli) received from the 

lower levels of the brain, and interactions between cortico-cortical subpopulations. 

An example of a cortical model as proposed by Brunel and Wang (2001) is shown 

in Fig. 1.  
 

 

Fig.1: Cortical network model. 
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Pyramidal cells send connections to other pyramidal cells through AMPA and 

NMDA synapses. Interneurons send GABAergic connections to pyramidal cells 

and other interneurons. Both receive excitatory connections from other cortical 

areas. Pyramidal cells can be functionally divided in several groups according to 

their selectivity properties, e.g. group #n is selective to object #n, etc., reproduced 

from (Brunel & Wang, 2001). 
  

Neurons transmit information by emitting sequences of spikes in various temporal 

patterns. Therefore, in neural encoding, timing of action potentials conveys 

essential information (e.g., Bi & Poo, 1998; Thorpe, Delorme, & Van Rullen, 

2001). Neural encoding involves measuring and characterising how stimulus 

signals are represented by stereotyped action potentials in mapping the stimulus to 

a response.  

 

In general, there are two paradigms of coding schemes namely firing rates and 

temporal codes. Firing rate has been a standard measurement for neural encoding 

for many years. Firing rate can be viewed in three different notions as follows 

(Gerstner & Kistler, 2002; Vogels, Rajan, & Abbott, 2005): 

 

a) Rate as a spike count (average over time) – firing rate at time t during a trial 

is measured by counting all the spikes that occur between times t and t+t, 

for some interval t defined by the experimenter, and dividing this count by 

t. For some sensible averages of spike occurrences, typical values for t 

can be 100 ms or 500 ms.  

b) Rate as spike density (average over trials) – firing rate is defined as the 

averaged number of spikes occurring between t and t+t over multiple trials. 

c) Rate as a population activity (average over several neurons) – firing rate is 

the summation of the number of spikes for the whole population, that occur 

between times t and t+t, for a small value of t. 

 

Without also to deny the role of firing rates in neural coding, there is growing 

evidence from behavioural experiments suggesting that essential information 

could also be found in the precise timing of spikes. Some studies suggest the 

significance of spike timing in neural encoding. The concept of temporal coding 

arises when the precision of spike timing provides most of the information in 

neural processing. Some well-known strategies of temporal coding are time-to-

first-spike coding, phase coding, latency coding, rank order coding, synchrony 

scheme and  polychrony scheme (e.g., Borst & Theunissen, 1999; Christopher 

deCharms, Blake, & Merzenich, 1998; Gabbiani & Midtgaard, 2001; Gerstner & 

Kistler, 2002; Izhikevich, 2006; Liu, Tzonev, Rebrik, & Miller, 2001). 

 

For information encoding in a spiking neural network, it is well-advised to count 

for time measurement either using firing rate (within a time window) or precise 

timing. Until now, there is no clear evidence that could lead us to determine the 
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most realistic spike encoding (i.e. firing rate or precise timing) since both have 

been proven to convey computational significance on how the real neuronal 

system encodes a certain information. It is also unknown if different parts of the 

brain may execute different encoding strategies. Hence, in this study it is tempting 

to explore the integration of firing rate and precise timing encoding schemes. As 

neurons work collaboratively to perform a cognitive function (Bloom, 2005; 

Purves & Pacala, 2008), we anticipate that the neuronal activity may result from 

the interaction between the process at local synapses and global network activity.  

 
 

3 Methodology 
 

In this section we describe the methodology for encoding of fish motion and 

learning the fish motion trajectory. Initially, we develop a recurrent spiking neural 

network, and then we encode the fish motion data to represent a particular fish 

motion sequence in the neural network. The encoding transforms a fish motion 

into a group of spiking neurons. For brevity, each point (S) in a motion is 

represented by a group of spiking neurons. Hence, a sequence of x0  x1  x2 is 

represented by 3 neuronal groups S0  S1  S2. Each sequence is assigned a 

target response that is represented by a group spiking neurons (R). The encoded 

network is then trained with a reward based approach. The network is trained to 

associate a motion sequence to a target response. 

 
 

3.1  Fish Dataset 
 

In this study, the fish dataset is obtained from fish4knowledge (Beyan & Fisher, 

2012).  Fish motion trajectory (T) is defined by the coordinate (x and y) in the fish 

bounding boxes. The n frame of the trajectories of any fish is defined by Ti= {(x1, 

y1),(x2, y2),…(xn, yn)}.           
  

For the experiment reported in this paper, we only encode the information on x 

points.  An example of fish motion data for fish1 and fish2 is shown in Fig. 2. The 

fish trajectories are captured from 93 different videos with the specifications of 

320x240 resolutions, and 5 frames per second. 
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Fig. 2. Motion trajectories for fish1 and fish2 (Jemili & Mohd Soid, 2017) 

 

The motion trajectory data is stored in a Matlab file. The file contains 3102 

structures, each of which corresponds to one fish trajectory. There are 3043 

normal and 59 rare trajectories. For this study, we selected 100 trajectories 

classified as “normal”  (Jemili & Mohd Soid, 2017). The normal behaviour 

applied when the fish was noted to have been swimming freely. The abnormal fish 

trajectory applied in any of the following conditions including fish stopping inside 

the coral for a long time, fish biting the coral, fish diving immediately and fish 

turning. 
 

 

3.2   Neural Encoding 
 

To encode a fish motion, we develop a recurrent spiking network consisting of 

1000 neurons with 800 excitatory (NE) and 200 inhibitory (NI) neurons.  Each 

excitatory neuron is randomly connected to 100 neurons. Each inhibitory neuron 

is connected to 100 excitatory neurons (Fig.3). The connection weight delays are 

between 1 to 20 ms. 
 



  

 

 

Nooraini Yusoff et al.                                                                                      166 

 
                              Fig. 3. Spiking Neural Network (NE = 80%, NI= 20%) 
 

 

The neural encoding focuses on converting the dataset into the form of spike. The 

encoding method retains the information of the original dataset to assist the 

learning process later (Yu et al., 2014). Encoding is generating the spiking pattern 

from the input stimuli.  The binary information has to be converted into the 

temporal pattern of the discrete spiking pattern. The fish bounding box has 4 

points x, y, h and w. Nonetheless, this study only uses the position of x. The neural 

encoding steps of fish motion are described as follows:  

 

i. Normalise the value of x points  

 

In this study the x point values are normalised in which a motion point is an 

average value of x from three frames. An example of the normalised x values can 

be found in Table 1. From the dataset, the values for x points are in between 2 to 

306. Table 2 shows the point of x as a motion of the fish and the time window 

(frame). 

 

Table 1:  Average value of x for fish dataset  

Frame x 

Averaged 

x 

138 157 - 

- 143 156 

144 165 159 

145 172 - 

- 146 177 

147 175 175 

148 173 - 

- 150 153 

152 170 165 
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Table 2:  Motion trajectory data of normalised x 

 

Trajectory 
#1 #2 #3 

1 165 136 126 

2 159 175 165 

3 203 107 53 

4 27 46 60 

5 82 115 201 

6 183 193 184 

7 17 62 74 

8 61 56 49 

9 22 41 67 

10 20 17 22 

11 129 117 81 

12 265 182 116 

13 108 187 146 

14 102 53 28 
 

 

ii. Encode the stimulus input, target response and sequence learning  

 

For the experiment reported in this paper, each x point represents a stimulus input 

in which the stimulus input is a group of neurons in the same group. From the 800 

excitatory neurons described earlier, each point is represented by 50 excitatory 

neurons. Each target response is represented by a group of 100 excitatory neurons. 

For our learning simulation there are seven stimulus groups (S0 – S6) to represent 

seven different points. The point (stimulus input) encoding is shown in Table 3. 
 

Table 3:  Stimulus input 

Point (stimulus 

input) # neuron 

S0 1-50 

S1 51-100 

S2 101-150 

S3 151-200 

S4 201-250 

S5 251-300 

S6 301-350 

 

For the output neurons, each trajectory is associated to a network response. For 

our simulation, there are two responses represented by two excitatory neuron 

groups with 100 neurons each. The encoding for the target response shown in 

Table 4: 
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Table 4:  Target response 

Response # neuron 

RA 600-700 

RB 701-800 
 

 

An example of the neural network activity is shown in the spike raster plot in Fig. 

4. The network consists of 1000 with 800 excitatory neurons (neurons #1 - #800) 

and 200 inhibitory neurons (#neurons #800 - #1000).  There are seven groups of 

excitatory neurons to represent seven x points (Table 3). Thus, each point is 

represented by a group of excitatory neurons. There are two target network 

responses namely, RA and RB that each target is represented by 100 excitatory 

neurons (Table 4). The remaining excitatory neurons and the inhibitory are known 

as the non-selective neurons. The activity of the neurons contributes to the 

network dynamics. The inhibitory neurons are also non-selective to any 

stimulation and only act as the random network inhibition. 
 

RA

RB

x points (Sn)

 

          Fig. 4. An example of neural network activity in a spike raster plot 
 

 

The neural network is trained to associate a motion trajectory to a target response. 

An example of motion-target (T) set is as follows: 

 

T ={(S4,S2)→RA, (S1,S2)→ RB , (S5,S3)→ RA , (S2,S1)→ RB } 

 

 

iii. Encode the network activity  
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In our approach, the network response is measured based on the spike rate in the 

response groups. After a motion is presented to the network, the number of spikes 

in each response groups is counted within a 20-minute time interval. As learning 

progresses, the activities of neurons in the associated groups are synchronised. 

 

 

3.3 Learning Fish Motion 
 

For training the network described in the earlier section, we implement the 

learning scheme as proposed in (Yusoff & Grüning, 2012). The task of learning is 

to associate a sequence of points (i.e. motion trajectory) to a target response. 

Every learning trial runs for 20 minutes simulated time. The algorithm is as 

follows: 

 

1. Simulation starts 

2. While time <= 20 min. simulated time 

3. Stimulate a network with background activity 

 apply a 1-ms pulse of 20 pA current to a randomly selected excitatory 

neuron if time > 100 ms, 

4. For each trial, present a sequence, e.g. (Si,Sj) Rk, to the network 

 select randomly a sequence, e.g. a two-point sequence,  S0  S1, and set its 

target response, e.g. RA 

 at tn: stimulate all 50 neurons within each stimulus group of the first point, 

Si with 1-ms super threshold current (20 pA) 

 at tn+inter-stimulus interval:  stimulate all 50 neurons within each stimulus group 

of the second point, Sj with 1-ms super threshold current (20 pA) 

 at t = onset of the last point, in a 20-ms time window of the response 

interval, count the number of spikes (F) fired by neurons in the response 

groups, RA and RB.  

5. Calculate the reward signal, r, with the reward policy (F) as follows (Table 

5) : 
 

Table 5: Reward policy 

Num. of spikes in the response group Reward signal 

FA(t) ≥ 2FB(t) r(t  1)  0.5          strong +ve 

reward 

 

FA(t)  FB(t)   2FA(t) 

 

 

1  Fj Fi                 weak +ve 

reward 

FA(t)  FB(t) -0.1                         -ve reward 

 

6. For every 10-ms time step, 
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 compute the sum of weight changes,wstdp, based on the spike time 

dependent plasticity (STDP) function 

Definition 2.1  Weight changes                         

wstdp   =     {A+e-t/+, if   t ≥ 0; Aet/-, if   t  0} 

 

          The change of weight depends on the difference t between the     

          firing time of postsynaptic and that of the presynaptic. 

 

 compute the weight change of all excitatory neurons based on the reward 

signal, r, obtained from the reward policy (F) and  is an activity-

independent increase of synaptic weight. 

 

Definition 2.2   Synaptic Weight                         

 

w(t) = [ + r(t)] wstdp    
 

Definition 2.3   Update the weights, w  

 

w(t+1) = w(t) + w(t) 

 

 

7. End of trial (the next trial proceeds with a delay of 100 ms after the offset of 

each response interval)  

 
 

 

4 Results and Discussions 
 

All learning simulation is implemented in C++ and Matlab is used to analyse the 

experiment results. To see the performance of learning, we trained a network to 

provide a target response when stimulated with a sequence. We observed the 

performance of learning with 3-point sequences.  

 

In the following experiments, this study investigated the learning performance 

with sequences of 3 trajectory points. The aim of the experiment was to train the 

network with the real fish motion trajectory for sequence learning task with 

different points without any repeating point.  The sequence learning sets and their 

response for fish motion are shown in Table 6. 
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Table 6. Sequence learning sets 

Sequence 

stimulus 

X1 X2 X3 Response 

(S4,S2,S1) 203 107 53 RA 

(S1,S2,S4) 82 115 201 RB 

(S5,S3,S2) 265 182 116 RA 

(S2,S1,S0) 102 53 28 RB 
 

For learning, the group of neurons that represent the first point was first 

stimulated by applying 20-pA pulse current. This followed by stimulation of the 

same strength of current to the second point and later to the third point. Each point 

is separated by 15 ms simulated time. The temporal delay was chosen based on 

our preliminary experiment on the effect of temporal delays from 10-20 ms. It has 

been found that 15 ms inter-stimulus interval (ISI) is the optimal delay in which 

the network response is influenced by the interaction between two associated 

points with no dominant stimulus among both that influences the response. The 

numbers of spikes in the response group were then computed within the 20 ms 

after the onset of the third point. The response group with the most active neurons 

is the winner. The network was then rewarded or penalized depending on the 

response. The learning protocol is depicted in Fig. 5.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Fish motion learning protocol 

 

The network was rewarded if the response pointed to the correct match for 

sequence learning, e.g. (S4,S2,S1)→A, of the fish motion trajectory motion. The 

average performances for correct recall rates for 10 different simulated networks 

were 68.94 and 69.1 for training and testing, respectively.   
 

 

5 Conclusion 
 

In this paper, we introduce the encoding of fish motion trajectory using a recurrent 

spiking neural network. The real data of fish motion obtained from 
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fish4knowledge (Beyan & Fisher, 2012) has been used in the learning simulation. 

Using a population of 1000 neurons with properties of Izhikevich spiking neuron 

model, we simulated association learning of fish motion trajectories and their 

target response. The learning protocol is followed from (Yusoff & Grüning, 2012). 

The learning is simple and plausible using a reward-based approach inspired from 

a neurophysiological study by (Erickson & Desimone, 1999). 

 

Based on the experiment findings, the encoding method of fish motion trajectory 

seems feasible to be coupled with the reward based learning that is based on 

modulated spike-time dependent plasticity (STDP). However the performance of 

learning could be improved especially for leaning with more complex pattern of 

motion trajectories. From our findings there seems a significant effect when a 

motion trajectory consists of repeating points (the findings are not discussed in 

this paper). Nevertheless, this could be regarded as among the pioneer studies that 

implement motion trajectory learning using spiking neural network in a reward-

based paradigm.  
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