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Abstract 

     An increasing demand of naturally producing metabolites has 
gained the attention of researchers to develop better algorithms for 
predicting the effects of reaction knockouts. With the success of 
genome sequencing, in silico metabolic engineering has aided the 
researchers in modifying the genome-scale metabolic network. 
However, the complexities of the metabolic networks, have led to 
difficulty in obtaining a set of knockout reactions, which eventually 
lead to increase in computational time. Hence, many computational 
algorithms have been developed. Nevertheless, most of these 
algorithms are hindered by the solution being trapped in the local 
optima. In this paper, we proposed a hybrid of Differential Search 
Algorithm (DSA) and Flux Balance Analysis (FBA), to identify 
knockout reactions for enhancing the production of desired 
metabolites. Two organisms namely Escherichia coli and Zymomonas 
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mobilis were tested by targeting the production rate of succinic acid, 
acetic acid, and ethanol. From this experiment, we obtained the list of 
knockout reactions and production rate. The results show that our 
proposed hybrid algorithm is capable of identifying knockout 
reactions with above 70% of production rate from the wild-type.   

     Keywords: knockout strategy, flux balance analysis, optimization, genome-
scale metabolic network, in silico metabolic engineering 

1      Introduction 

Metabolic engineering is defined as the process of improving the cellular 

activities by manipulating enzymatic, transport, and regulatory functions of the 

cell with the use of recombinant DNA technology. The purpose of metabolic 

engineering is to improve the microbial strain in order to economically and 

industrially produces the desired metabolites. The retrofitting of a metabolism of a 

bacteria is done in the traditional techniques such as random mutagenesis and 

screening [1]. These traditional techniques, however, is irreversible. Undoubtedly, 

it is time-consuming, expensive and laborious. Another disadvantage of the 

traditional method is that it requires prior knowledge of the genetic manipulations, 

which eventually makes it tedious and challenging.  

Thus, with the breakthrough of full genome sequencing, the construction of 

genome-scale model (GSMM) of a particular organism has become possible. 

Eventually, it enables the genetic modifications to be carried out easily, therefore 

the consequences of genetic modifications and phenotypic behavior can be 

predicted. These GSMMs have initiated a new interdisciplinary in metabolic 

engineering known as in silico metabolic engineering. The aforementioned 

limitations of traditional method can be significantly improved through the 

application of in silico metabolic engineering. The advantages of in silico 

compared to in vitro or in vivo experiments, the former method are easy, less 

equipment, and costs needed, to name a few.  

However, the complexity of metabolic network has resulted in the dimensions of 

solutions space to be large and thus it is difficult to obtain a near-optimal set of 

reactions to be knockout in order to enhance the production of desired metabolites 

[2]. Due to the complexity of the dataset, the computational time increases 

exponentially. In this research, a hybrid of Differential Search algorithm (DSA) 

and Flux Balance Analysis (FBA) were proposed and developed to simulate and 

identify a set of reactions knockout towards the overproduction of desired 

metabolites. Three GSMMs, which are Escherichia coli (iAF1260 and core 

model) and Zymomonas mobilis (iEM439) were used to test the developed hybrid 

algorithm. It focuses on the organism’s metabolism and phenotypic characteristics 

by optimizing the production rate of succinic acid, lactic acid, acetic acid and 

ethanol, while maintaining the growth rate of organisms after the perturbation. 
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The simulations results obtained by DSAFBA were compared with previous 

developed algorithms. 

The paper is categorized as follows: Section 2 discusses the related works 

pertaining to the constraint based approaches. Section 3 describes the details of 

problem formulation. Section 4 describes the proposed method, while Section 5 

presents the results and discussion. Lastly, Section 6 provides the conclusion and 

future work of the study.  

2      Related Work 

In previous years, many approaches have been developed to redesign and analyze 

the metabolic network for improving the production of desired metabolites [1,3]. 

One of the approaches is a constraint-based modeling that represents the 

metabolic network in mathematical format by imposing a set of constraints on 

phenotype. It captures the relationships of genotype-phenotype; therefore, it 

enables the researchers to predict the outcomes of organisms after perturbations 

such as products and growths [1]. The earliest algorithm developed in 2003, 

OptKnock, is based on the bi-level linear optimization, where mixed integer linear 

programming (MILP) is used to identifies knockout strategies that lead to the 

maximum production of metabolites and maximum growth rate [4].  

Later, OptKnock derived algorithm, named RobustKnock is developed to predict 

the reactions deletion strategies for overproducing the production rate of target 

metabolites. This method applies max-min optimization framework with 

consideration of the presence of competing pathways in the network [5]. Another 

algorithm that extended from OptKnock is OptGene. It uses a Genetic Algorithm 

(GA) and Evolutionary Algorithm (EAs) for formulating in silico design problems 

with flexible objective and determining the possible best-set number of reactions 

knockout [1]. Another recently developed algorithm, named as IdealKnock, has 

been developed for identifying knockout strategies by searching the whole 

genome metabolic model without restricting the number of knockout [6]. 

The aforementioned methods are mainly centralize on flux balance analysis 

(FBA) for modeling and bi-level optimization for optimizing the knockout 

strategies. Biologically nature inspired evolutionary algorithms such as ant colony, 

bees algorithm, simulated annealing, and particle swarm optimization has been 

used in obtaining the near-optimal set of knockout [7–9]. The search strategy of 

these algorithms, use more than one particle for searching the solution space, thus 

it is well known among the researchers to apply them for finding the near-optimal 

reactions knockout strategies.  

However, these aforementioned methods are comparatively weak in local search, 

does not guarantee an optimal solution or represent sub optimal solution, and 

computationally expensive [1,10,11].  A detailed review focusing on 
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computational constraint based optimization methods together with the real 

applications has been discussed [12]. 

3      Problem Formulations  

The problem of identifying a set of reactions knockout from the GSMM can be 

formulated mathematically by representing the GSMM in stoichiometry matrix 

(S) that consists of reactions and metabolites (size of ). The stoichiometry 

matrix describes the dynamic mass balance equation of the GSMM by a 

differential equation between the flux rates of the reactions (v) and concentrations 

of metabolites (c). The mass balance must be at a steady-state level that signifies 

there is no internal and external change in metabolite concentration [13]. Assume 

that there are m metabolites and n reactions:  

Flux vector, V of length n:  

                        (1) 

Concentration vector of reactions, c of length m: 

             (2) 

From the above equations, the dynamic mass balance equation with respect to 

time can be mathematically represented as:  

                                            (3) 

Where t represents the time, v is the flux rates of reaction, m is the number of 

reactions, n represents the number of metabolites, c is the concentration vector of 

reactions, and S is the stoichiometric matrix. 

The dynamic mass balance equation describes the changes of concentration of 

each metabolite, c, over time. This study focuses on finding the optimal set of 

reactions knockout in order to enhance the production rate of desired metabolites 

while maintaining the growth rate of the model. In doing so, FBA seeks the 

optimal points for maximizing the objective function,  where c is a 

weight vector of reactions towards the objective function. Meanwhile, v is the flux 

vector and S is the stoichiometric matrix. This optimization is accomplished with 

the uses of linear programming and sets of lower and upper bounds as constraints 

on v, while maintaining the system of mass balance equation at steady state, 

which is Sv = 0.  

4      Methodology 

This section describes the proposed method, hybrid of Differential Search 

Algorithm and Flux Balance Analysis, termed as DSAFBA, followed by the 

datasets being used.  
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4.1      Differential Search Algorithm 

DSA is one of the swarm-based metaheuristics algorithm inspired by the 

migration behavior of organisms towards the fruitful condition. The migration 

behavior mimics the Brownian-like random walks movement [14]. The migration 

process consists of a group of individuals with a superorganism. The 

superorganism moves from one habitat to another habitat in order to find a new 

habitat that is favorable to them. If the new habitat is able to satisfy the needs, the 

superorganism will reside at the new habitat named as a stopover site for the 

certain period of time. The migration and movement process continues from the 

previous site and moves towards more fruitful habitat. The exploration and 

exploitation of DSA are carried out by Brownian-like random walks. Previously, 

however, most optimization applications using DSA were focusing on solving 

continuous problem [14–16]. Thus, the conventional DSA has been modified to 

cater for binary problem as the domain problem focused in this research is binary.  

4.2      The proposed hybrid of Differential Search Algorithm and 
flux balance analysis (DSAFBA) 

We proposed DSAFBA in identifying the near-optimal set of reactions to be 

knocked out with the purpose of enhancing the production of desired metabolites. 

DSA algorithm uses multiple random numbers in the process of generating new 

artificial-organisms and selects random artificial-organisms, which lead the 

algorithm to diverge from local optimum. Meanwhile, FBA is used to calculate 

the fitness score of the solutions.  

The proposed algorithm, DSAFBA is the combination of optimization algorithm 

and modeling method. The difference between proposed algorithm and previous 

algorithms is the search strategy of DSA. Since DSA simultaneously uses more 

than one individual in determining the global optimum; therefore, it has no 

preference to the best possible solution directly to the problem. As shown in Fig. 1, 

the hybrid method, DSAFBA is divided into two parts. First part is the 

initialization and fitness evaluation, while the second part is exploration and 

exploitation. There are two improvements being made: (1) the constraint based 

modeling, FBA is used as the fitness function and hybrid into DSA optimization 

algorithm as depicted by dashed box and (2) modified transfer Tanh function has 

been applied to generate binary numbers of 0 and 1 as standard DSA is only 

applicable to the continuous problem [17,18]. 
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Fig. 1: The flowchart of DSA and FBA hybrid algorithm 
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4.2.1 Initialization of population 

The initialization of population is a random binary matrix of size , whereby 

N is the number of artificial organisms and D is the dimension. In the metabolic 

model, the abundance of thousands of genes that represent more than one 

reactions can be described as the combinatorial problem due to the process of 

selecting best possible reactions for improving the production rate of metabolite 

are hindered. Therefore, the genes in metabolic network were assigned with 

binary representation, “0” and “1” which indicates maintained the genes and 

knockout, respectively. By randomly assigning the binary value, we can later 

deduce what reactions being knockout and the effects of knockouts towards the 

metabolite production. Furthermore, as in the case of multiple genes for one 

reaction, the effects of knockout is varied for “AND” relationship and “OR” 

relationship (gene-protein-reaction). The former will effect on all genes being 

inactivated, whereas the latter, adequate with only one gene being inactivated (Fig. 

2).   

 

 
Fig. 2: Representation of binary 0 and 1 value to genes-reactions. 

4.2.2 Product rate evaluation using Flux Balance Analysis 

This fitness score is a marker as for whether the artificial-organism is suitable for 

the next generation. In order to calculate the fitness score, FBA is applied 

whereby the objective function, Z, is maximized according to this function, 

                            (4) 

Where c is the weight vectors of reactions towards the objective function, v is flux 

vector, and i is the index variable of size m (m is the size of reactions).  

Each reaction that has given knockout status, the upper and lower bounds of the 

respective metabolic flux were assigned to zero and consequently, a new modified 

metabolic model is derived. From the modified model, the fitness score of the 

objective function is calculated and the maximum score is selected for the next 

generation.  
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The stoichiometry-based models cannot predict rates without a priori knowledge 

or assumption of the substrate uptake rate [2]. Since FBA requires substrate 

uptake rate and oxygen consumption, therefore, production rate has been used as 

the objective function in this research. Fig. 3 shows the flow of calculation of 

fitness score, production rate. First, the growth rate of modified model were 

obtained and only mutant having growth rate of more than 0.1 will be selected as 

a candidate for optimizing the production of desired metabolite. However, the 

maximum production of desired metabolites (maximum theoretical yield) can 

only be achieved when the growth rate is at 0.  

 
Fig. 3: The flow of calculation of fitness score which is production rate. 

This research used production rate (PR) as the fitness score. Thus, each artificial-

organism is assigned a fitness score, PR, as an indicator whether to select the 

artificial-organism for next generation. The fitness function can be formulated as 

below: 

         (5) 

4.2.3 New artificial-organism and termination 

After the fitness score of each artificial-organisms is calculated, the best artificial-

organism is selected as global fitness. In DSA, the exploration is done by 

Brownian-random walk motion whereby, individuals of the artificial-organisms, 



 

 

 

 

 

 

 

Kauthar et al.                                                                                                       92 

known as donor; are selected randomly and move towards more fertile position, 

known as stopover, So. Donor is used to search for potential fruitful area (in this 

research is the combinations of reactions knockout giving higher production rate) 

is generated by uniform distributed random numbers of dimension. However, in 

conventional DSA, donor is a real number vector of dimension size. Thus, in this 

research, donor is transformed into binary number by modified Tanh transfer 

function as follows.  

              (6) 

Meanwhile, greedy algorithm is utilized during the exploitation process, whereby 

the fitness of the stopover sites was calculated and compared with the global 

fitness score. If the fitness of stopover site is better than the previous one, thus the 

artificial-organism can immediately settle at the discovered position and continue 

their migration from this position. These steps are repeated until it reaches 

maximum iteration (condition of stopping criterion). Algorithm 1 shows the 

pseudocode of Brownian-random walk motion, where there are five uniform 

distributed random numbers and four counters involved in the searching process. 

Algorithm 1: Pseudocode for Brownian-random walk motion 

1: if rand1 < rand2  

2:      if rand3 < p1 

3:         r = rand(d,n) 

4:      for Counter1 = 1:d do  

5:         r(Counter1,:) = r(Counter1,:) < rand4 

6:      endfor 

7: else 
8:      r = ones(d,n) 

9:         for Counter2 = 1:d do 

10:            r(Counter2,randi(n)) = r(Counter2,randi(n)) < rand5 

11:         endfor 

12:      endif 

13: else 
14:      r = ones(d,n) 

15:         for Counter3 = 1:d 

16:            temp = randi(n,1,ceil(p2×n)) 

17:            for Counter4 = 1:size(temp) 

18:               r(Counter3,temp(Counter4)) = 0 

19:            endfor 

20:         endfor 

21: endif 

 

In order to show the differences between standard DSA and our proposed 

modified DSA, we have carried out the pre-experiment between standard 

DSAFBA and proposed method. The difference between standard DSAFBA and 
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modified DSAFBA is modified Tanh transfer function has been applied to the 

latter method to generate binary number 0 and 1 from a matrix of stopover. In the 

case of E.coli core model for succinic acid production between standard DSAFBA 

and modified DSAFBA, the former method is able to achieve 15.3756 (in unit 

mmol/g[DW]×hr) while our proposed method able to obtain mutant producing 

succinic acid of 15.50 (in unit mmol/g[DW]×hr).  

4.3      Experimental Setup and Dataset 

The effectiveness of DSAFBA algorithm is tested by experimenting on three 

genom-scale metabolic model of two organisms, Escherichia coli, and 

Zymomonas mobilis. The properties of the organisms used throughout the work 

described herein is shown in Table 1. The genome-scale model of the three 

organisms is publicly available in System Biology Markup Language (SBML) 

format from BiGG database.  

Table 1: Properties of organisms used 

Model Reactions Genes Metabolites Ref 

E.coli core 

model 

95 137 72 [19] 

iAF1260 2162 1261 1461 [20] 

iEM439 767 794 705 [21] 

 

All models used were undergo preprocessing steps. Fig. 5 shows the steps 

involved in preprocessing. Since metabolic models of organisms are large, thus it 

is crucial in removing certain reactions that are unnecessary.  The preprocessing 

steps are based on computational approaches and biological assumptions with the 

intention of eliminating unrequired reactions from the models. Also, the 

preprocessed steps were done in order to minimize the solutions space of the 

model, thus the candidate reactions for knockout could serve as valid knockout 

reactions.  

Firstly, the essential reactions were removed from the list of potential knockout 

reactions. The essential reactions are the reactions that are necessary for the 

growth of the organisms [22,23]. Next step is to exclude transport reactions and 

reactions that are not associated with the production of desired metabolites which 

were the reactions from certain subsystems, including cell envelope biosynthesis, 

membrane lipid metabolism, glycerophospholipid metabolism, and inner and 

outer membrane transport. Lastly, the reactions that act on high-carbons were 

removed from the candidates of reactions knockout due to the difficulties in 

carrying high flux towards the production of desired metabolites. Therefore, the 

outcome of removing these reactions has greatly reduced the solution space and 

consequently, the computation time as well. Table 2 shows the preprocessed 

model and number of candidate reactions for knockout. 
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Fig. 5: Data preprocessing and candidate selection of reactions for knockout 

Table 2: Preprocessed model and candidate reactions for knockout 

Model Raw Model Preprocess 

Model 

Candidate 

reactions for 

knockout 

Reactions Metabolites Reactions  

E.coli core model 95 75 48 48 

iAF1260 2162 1461 461 461 

iEM439 767 705 684 684 

 

MATLAB and Constraints Based Reconstruction and Analysis toolbox (COBRA) 

are used for simulation of reactions knockout in the three datasets. The results 

obtained were assessed according to their production rate and growth-rate after 

the knockout. In this paper, all simulations were performed according to the 

conditions (substrate uptake rate, desired metabolite to enhance, and oxygen 

uptake rate) as shown in Table 3. The conditions of simulations were obtained 

from previous researches [9,21]. The experiments mentioned here were done 

using a 3.6GHz Intel Core i7 processor with 16 GB RAM workstation. For the 

ease of comparison, the number of knockouts for each case study will be the same. 

However, we have tested for different number of knockouts and evidently, the 

results shown in Section 3 are the best among the different number of knockouts.  
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Table 3: Conditions of simulation experiment used throughout this study and the 

theoretical yield of each metabolite 

Organism Oxygen  Substrate 

uptake 

rate  

Desired 

Metabolite 

Growth 

rate  

Maximum 

theoretical 

yield  

Ref 

iAF1260 18.5 10 Succinic 

acid 

0.8856 16.722 [9] 

Acetic 

acid 

28.467 

iEM439 0 10 Ethanol 0.147 20 [21] 

E.coli 

core 

model 

10 10 Succinic 

acid 

0.874 16.38 [19] 

5      Results, Analysis and Discussions  

5.1 Case Study 1: Succinic acid production in E.coli core model 

Our proposed hybrid algorithm was compared with OptKnock and IdealKnock 

for production of succinic acid in E.coli core model. Table 4 shows the result of 

three different methods, together with their suggested knockouts, time taken, 

maximum production rate, growth rate and number of knockout. From this table, 

the suggested knockouts by our proposed method, DSAFBA, is able to achieve 

the highest production rate of succinic acid with high growth rate compared to 

OptKnock and IdealKnock with OptKnock obtained by Gu et. al [6]. Furthermore, 

we successfully obtained nearly the similar suggested knockouts as the other two 

methods, which are G6PDH2r, ME1, ME2, PYK, and SUCOAS.  

Table 4: Suggested knockout strategies obtained by different methods for succinic 

acid in E.coli core model 

Max. theoretical yield: 16.38 

Wild-type growth rate: 0.874 (hr-1) 

Method Production Rate 

(mmol/g[DW]×hr) 

Growth rate (hr-1) Suggested knockouts 

DSAFBA 15.50 0.4836 ACALD, G6PDH2r*, 

GND, ME1*, ME2*, 

PFL, PYK*, 

SUCOAS* 

OptKnock 

[6] 

13.80 0.059 AKGDH, AKGt2r, 

GLUt2r, ME1*, 

NADTRHD, PDH, 

PTAr, PYK* 
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IdealKnock + 

OptKnock 

[6] 

12.73 0.2 ACKr, AKGt2r, 

G6PDH2r*, GLUt2r, 

ME1*, ME2*, PYK*, 

SUCOAS* 

* Denotes the same suggested knockouts obtained by DSAFBA and other methods. 

In aerobic wild-type E.coli, the production of succinic acid is only occur as final 

product of citric acid cycle with the presence of glyoxylate bypass [24]. One way 

of optimizing the production of succinate is to manipulate the pyruvate 

metabolizing system. From the list of suggested knockouts, three reactions are 

involved in pyruvate metabolism; acetaldehyde dehydrogenase (ACALD), 

pyruvate formate lyase (PFL), and pyruvate kinase (PYK). The genes associated 

with these reactions are adhE, pflB, and pykA, respectively. These reactions are 

responsible for the conversion of phosphoenolpyruvate into other byproducts 

formation including lactate, formate, acetate, acetaldehyde, and ethanol. The 

knocking out of these reactions and their associated genes, will redirect the flux 

towards citric cycle. The first E.coli mutant strain, NZN111, was developed by 

inactivating the pflB and ldhA genes, however, it resulted in low biomass flux and 

succinic acid production [24–26]. Further improvement of mutant strain with 

improved growth rate and succinic acid production has been shown by strain 

KJ060 which made inactivation of adhE, ldhA, ackA, focA, and pflB genes showed 

improvement in succinate yields of 1.2 – 1.6 mol/mol glucose. However, there 

were traces of byproducts acetate and malate being produce as well [27].  

Moreover, the intermediate metabolites, phosphoenolpyruvate (PEP) and malate 

are the precursor for formation of pyruvate, succinate and other byproducts. The 

conversion of PEP to pyruvate is done by pykA gene, while maeA and maeB genes 

do the conversion of malate to pyruvate. Thus, these genes encoded for PYK and 

malic enzymes (ME1 and ME2) are suggested for knockout as well [28,29]. 

Another approach of optimizing the succinate yield is via pentose-phosphate (PP) 

pathway by regulating the NADH supply. PP pathway generates NADPH via 

oxidation of glucose-6-phosphate by zwf gene (glucose 6-phosphate 

dehydrogenase reaction, G6PDH2r). According to [30,31], the knocking out of 

zwf and gnd genes will slightly affect the growth rate of organism and resulted in 

non-operational PP pathway. Eventually, flux towards the citric acid cycle will be 

increased as well. In activation of latter gene, which encodes for 

phosphogluconate dehydrogenase (GND) reaction, will reroute the flux towards 

Entner-Doudoroff pathway [31].  

In the case of succinyl-coA synthetase (SUCOAS) reaction, encoded by gene 

sucC and sucD genes, it is responsible for the reversible conversion of succinate 

to succinyl-coA. Previous research has shown that this gene is important for the 

cell viability; and removal of these genes may resulted in reduced growth rate of 

the organism [32]. Considering that succinic acid is an intermediate product of 

TCA cycle, thus it is important to block the flux from divert from the succinic 

acid production. Therefore, the combination of suggested knockouts by DSAFBA 
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are responsible for growth rate and optimizing the production of succinic acid in 

the organism.  

5.2 Case Study 2: Succinic acid and acetic acid production in 
E.coli iAF1260 

The E.coli has been used in producing industrially important metabolites in bulk 

forms such acetic acid, succinic acid, and others [3,27,33]. Using E.coli, by 

removing certain reactions, the production of succinic acid and lactic acid could 

be improved. Succinic acid has been useful in wide range of applications and 

industries including food processing, pharmaceuticals, and others [34,35]. 

Regardless of the usefulness of succinic acid, however, the production of succinic 

acid as an intermediate minute fermentation product, has urged the scientists and 

researchers to reengineer and design the organism for increasing the production of 

succinic acid [35]. Meanwhile, acetic acid is one of the major fermentation 

products produced by fermentative bacteria. However, in high cell density of 

E.coli, the production of acetic acid may inhibits the cell growth [36].  

Therefore, in second case study, Escherichia coli of strain iAF1260 has been used 

for our proposed algorithm for optimizing the production of succinic acid. While, 

for acetic acid case study, the knockout strategies are carried out to optimize the 

production rate, together with the growth rate. The simulation results obtained are 

compared with previous methods and validate biologically by referring to 

biological database and journals.  

Table 5 shows the suggested knockout strategies obtained by different methods 

for succinic acid production in E.coli iAF1260. From Table 3, it shows that 

DSAFBA suggests knockout reactions that contain competing reactions either 

consuming succinate or precursor for production of succinic acid. The reactions 

involved are succinate dehydrogenase reaction (SUCDi) and 

phosphotransacetylase (PTAr), encoded by pta or eutD genes and sdhA, sdhB, 

sdhD, or sdhC genes, respectively. Considered that succinic acid is an 

intermediate product of fermentation, the knockout of the former reaction will 

hinder the production of fumaric acid [37]. PTAr catalyzes the reaction of 

coenzyme-A from acetyl-coA. However, this reaction competes with succinic acid 

production for its precursor [10]. Consequently, many other strain design 

algorithms suggested knockout combinations of pta and sdhABCD [38,39].  

Table 5: Suggested knockout strategies obtained by different methods for succinic 

acid production in E.coli 

Max. theoretical yield: 16.72 

Wild-type growth rate: 0.8856 (hr-1) 

Method Production rate 

(mmol/g[DW]×hr) 

Growth 

rate (hr-1) 

Suggested knockouts 

DSAFBA 12.447 0.5749 DHORD2, IDOND *, PSERT, 

PTAr, TALA, SUCDi * 
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ReacKnock 

[40] 

9.130 0.129 ACGAMK, ACt2rpp, ATPS4rpp, 

IDOND *, PSP_L, SUCDi * 

IdealKnock 

[6] 

9.254 0.0973 ALCD2x, CYTBD2pp, 

CYTBDpp, CYTBO3_4pp, 

D_LACt2pp, PYAM5PO 

* Denotes the same suggested knockouts obtained by DSAFBA and other methods. 

DSAFBA also suggests some other knockout reactions, including dihydroorotic 

acid dehydrogenase (DHORD2), L-idonate 5-dehydrogenase (IDOND), and 

phosphoserine transaminase (PSERT). These reactions are encoded by genes pyrD, 

idnD, and serC, respectively. Generally, after the perturbations, the organisms 

will try to maintain the homeostasis of the cell and balance between production of 

succinic acid and growth rate. DHORD2 and IDOND are responsible for 

maintaining the balance of H+ in E.coli, while PSERT is responsible for the 

growth of cell [41]. Not only in E.coli, the suggested knockouts for improving the 

production of succinic acid can be seen in other organism as well such as 

Mannheimia succiniproducens [42]. 

In Table 6, although the difference of acetic acid production rate between our 

proposed algorithm and other methods are low (approximately 1.88), nevertheless, 

DSAFBA is able to achieve highest mutant growth rate compared to OptKnock 

and IdealKnock in E.coli iAF1260. Furthermore, DSAFBA is capable in 

suggesting four knockouts similar to OptKnock and IdealKnock, which are 6-

phosphogluconate dehydratase (EDD), 2-dehydro-3-deoxy-phosphogluconate 

aldolase (EDA), fructose 6-phosphate aldolase (F6PA), and fructose-bisphosphate 

aldolase (FBA). The two former reaction is associated to pentose phosphate 

pathway and encoded by edd and eda genes, while the latter two reactions are 

associated with glycolysis and encoded by genes fsaA and fsaB; fbaA, ydjl, and 

fbaB, respectively. The other suggested knockout is xylose isomerase (XYL12) 

encoded by gene xylA.  

Table 6: Suggested knockout strategies obtained by different methods for acetic 

acid production in E.coli 

Max. theoretical yield: 28.467 

Wild-type growth rate: 0.8856 (hr-1) 

Method Production rate 

(mmol/g[DW]×hr) 

Growth 

rate (hr-1) 

Suggested knockouts 

DSAFBA 21.2686 0.746 EDA *, EDD *, F6PA *, FBA *, 

XYL12 

OptKnock 

[40] 

23.150 0.119 ATPS4rpp, ECOAH5, EDA *, 

LYSt3pp, TPI 

IdealKnock 

[6] 

23.147 0.115 ATPS4rpp, EDD *, F6PA *, FBA 

*, PGCD 

* Denotes the same suggested knockouts obtained by DSAFBA and other methods. 
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Starting with the knockout of F6PA and FBA, the sequence of gluconeogenesis 

steps can be avoided. Therefore, there will be surplus of fluxes directed towards 

the production of pyruvate, which is the precursor for acetic acid production. 

Moreover, EDA reaction that catalyzes 2-dehydro-3-deoxy-D-gluconate-6-

phosphate to pyruvates and D-glyceraldehyde 3-phosphate is suggested for 

knockout as well. Meanwhile, EDD reaction which responsible for production of 

2-dehydro-3-deoxy-D-gluconate 6-phosphate, is suggested for knockout as well. 

Thus, the combination of these four suggested knockouts, we hypothesized that 

the Embden-Meyerhof-Parnas (EMP) pathway is being deactivated, and instead 

activate the ED pathway, which produced pyruvate from glucose-6-phosphate 

[43]. In the case of xylose isomerase reaction, it is responsible for ethanol 

formation [44]. Since pyruvate is precursor for production of ethanol and acetic 

acid, thus, by removing xylA gene associated XYL12 reaction, the flux towards 

ethanol production is forward to the production of acetic acid.  

5.3 Case study 3: Ethanol production in Z.mobilis  

Z.mobilis is an anaerobic ethanologenic bacterium that uses the Entner-Doudoroff 

(ED) pathway for glycolysis, relative to the other engineered bacteria such as 

S.cerevisiae and E.coli which use Embden-Meyerhof-Parnas (EMP) [21,45]. The 

advantages of Z.mobilis including higher substrate uptake rates, high tolerance 

towards alcohol, and lower biomass rate, has let Z.mobilis become a promising 

host for ethanol productions [46]. Furthermore, different model strains of 

Z.mobilis has been developed and curated, with the latest account for 692 

reactions [21]. In addition, detailed reviews of this promising bacteria for ethanol 

production has been thoroughly reported [46–48]. In this research, we applied 

GSMM of Z.mobilis for identifying set of reactions knockout for optimizing the 

production of ethanol.  

For the production of ethanol in this organism, however, we could not manage to 

get comparison from other methods, as Z.mobilis is still new for fuel-bio refineries 

in the industrial scale. From Table 7, DSAFBA suggested three knockouts for 

optimizing the production rate of ethanol; glutamate dehydrogenase (GLUDy), 

lactate dehydrogenase (LDH_D), and phosphoglucose isomerase (PGI). 

Table 7: Suggested knockout strategies obtained by different methods for ethanol 

production in Z.mobilis 

Max. theoretical yield: 20 

Wild-type growth rate: 0.147 (hr-1) 

Method Production Rate 

(mmol/g[DW]×hr) 

Growth rate 

(hr-1) 

Suggested knockouts 

DSAFBA 19.80 0.130 GLUDy, LDH_D, PGI  

OptKnock 17.90 0.134 CYSDS, SGDS, PPKr  

According to Lee et al. [49], pyruvate decarboxylase is the sole source for ethanol 

production in Z. mobilis. This is due to the production rate of ethanol dropped 
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when pyruvate decarboxylase is removed from Z.mobilis. However, the knockout 

of glutamate dehydrogenase which encoded by gltB gene, did not affect the 

maximum production rate of ethanol. Furthermore, work done by Nissen et al. 

[50] for overproducing ethanol production in S.cerevisiae, had shown the deletion 

of the NADPH-dependent glutamate dehydrogenase has resulted in increase of 

ethanol production and lower the byproduct formation. Nevertheless, we conclude 

that this gene is responsible for the growth rate of Z.mobilis, as it has slightly 

minimized the growth rate of mutant. 

Pyruvate is the precursor for ethanol production. However, other byproducts such 

as lactate and succinate compete with ethanol. In the case of ldhA gene associated 

LDH_D reaction, which transform pyruvate to lactate, it has been suggested for 

knockout as well. Referring to the work done by Seo et al. [51], the deletion of 

ldhA gene has increased the ethanol production by 0.25 fold. Furthermore, the 

deletion of this reaction for optimizing the ethanol production is observable in 

other organisms as well, such as Clostridium thermocellum, Bacillus subtilis, and 

Saccharomyces cerevisiae [52–54]. Therefore, knocking out the LDH_D reaction 

may increase the production of ethanol and succinic acid as it blocks the 

production lactate and redirect the flux towards other productions.  

Meanwhile, phosphoglucose isomerase encoded by pgi gene that convert glucose-

6-phosphate into fructose-6-phosphate has been suggested for knockout as well. 

Considering that Z.mobilis used ED pathway for fermenting glucose, thus, 

knocking out pgi gene eventually will divert the flux towards gluconate and ED 

pathway. Furthermore, the removal of this gene, will hinder the byproducts 

production including xylose and ribulose [49]. The same observation of ethanol 

production in E.coli has been made by [55]. Thus, the combinations of reactions 

knockout suggested by DSAFBA may represent a guideline for biologists to 

design and reengineer the organism in biological experiment.  

In the meantime, Table 8 shows the average time taken of different methods using 

two E.coli models. Considering that E.coli core model is a condensed version and 

contains central metabolism reactions, the computational time taken of DSAFBA 

is the fastest compared to other methods. However, for E.coli strain iAF1260, the 

computational time taken of DSAFBA to obtain the near optimal result was 

slightly higher than IdealKnock. This is probably due to the searching strategy of 

DSA that employs multiple artificial-organisms. Nevertheless, regardless of the 

longer computation time for DSAFBA, it successfully able to identify knockout 

strategies and surpasses the knockout strategies obtained by the other two 

methods.  

Table 8: Comparison of computational time (in sec) for different methods and 

organisms 

Model Method  Computation time (sec) 

E.coli core model DSAFBA 10.8 

OptKnock 270 
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IdealKnock 111.6 

Escherichia coli iAF1260 DSAFBA 1296 

ReacKnock 201600 

IdealKnock 1080 

From Table 8, it can be concluded that DSAFBA perform better than OptKnock 

and ReacKnock. Moreover, considering the size of model used, DSAFBA is 

applicable for small model, however for large dataset; DSAFBA requires slightly 

longer computational time. According to [6], although their proposed algorithm 

was able to identify knockout strategies with less computation time, however, the 

results obtained does not ensure for global optima.  

Although DSA employs multiple artificial-organisms, it is capable to outperform 

other methods in finding the best knockout strategies with highest production rate 

and growth rate. Furthermore, DSA is a new population-based metaheuristic 

optimization algorithm mainly having three advantages; using less parameters, 

able to find global near-optimal solutions, and less computational time. Fig. 6 

shows the convergence graph of objective function for this study. 

 
Fig. 6: Convergence graph of the DSAFBA of different production of desired 

metabolites. The x-axis represents iterations whereas the y-axis represents the 

production rates. 

6      Conclusion  
The success of developing the precise and effective hybrid modeling and 

optimization methods for simulation of genome-scale metabolic networks has 

significantly contributed to the field of in silico metabolic engineering. Eventually, 

it leads to the time improvement in the production of desired metabolites. 

In this study, we proposed and developed a hybrid of modeling; Flux Balance 

Analysis, and optimization algorithm; Differential Search Algorithm, to identify 
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knockout strategies for improving the production rate of desired metabolites. 

Three genome-scale metabolic models of two organisms, Escherichia coli and 

Zymomonas mobilis, were used along the study. DSAFBA is able to identify near-

optimal sets of reactions knockout for enhancing the production of the desired 

metabolites while maintaining the viability of organisms. According to the results, 

it shows a significant improvement in the productions of desired metabolites 

compared to the previous methods. DSA effectiveness has been shown to identify 

the best set of reactions knockout. Based on the predicted set of knockout done by 

DSA, FBA is applied as the fitness function to calculate the optimum production 

of desired metabolites.  

However, due to the large complexity of genome scale metabolic model, some 

suggested knockouts are non-intuitive, therefore, it is important to have biological 

validation by means of in vivo experiment. Despite the irrelative suggested 

knockout directly towards the production of desired metabolites, we assumed that 

our proposed algorithm assessed the metabolic network as highly complex 

reactions – interactions, thus incorporates reactions from different pathway as 

well.  

The results presented here are limited to computational validation and could be 

applied as a prior knowledge during in vivo implementation. However, in the real 

situation, the media condition for cultivating organisms, and other factors should 

be considered as well. Nevertheless, the in silico results presented here can be 

used as a reference in aiding the scientists and biologists to assess the validity of 

the results in the wet lab experiment. For future work, consideration of 

simultaneous multi-objective optimization between growth rate and production 

rate is proposed for improving the previous algorithm. 
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