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Abstract 

     The increasing trend of claim frequency and claim severity for 
auto-insurance result in need of methods to quickly file claims while 
maintaining accuracy. One of them is machine learning that treats 
the problem as supervised learning. The volume of the historical 
claim data is usually large. Moreover, there are many missing values 
for many features of the data. Therefore, we need machine learning 
models that can handle both data characteristics. XGBoost is a new 
ensemble learning that should be very suitable for both data 
characteristics. In this paper, we apply and analyze the accuracy of 
XGBoost for the problem of claim prediction. We also compare the 
performance of XGBoost with that of another ensemble learning, 
i.e., AdaBoost, Stochastic GB, Random Forest, and online learning-
based method, i.e., Neural Network. Our simulations show that 
XGBoost gives better accuracies in term of normalized Gini than 
other methods. 

     Keywords claim prediction, large volume, missing values, ensemble learning, 

XGBoost 

 

1      Introduction 

Auto-insurance claim is a request for financial coverage caused by automobile-

related loss or sustained damage from a policyholder. An auto-insurance provides 

coverage of bodily injury, property damage, personal injury, comprehensive 

physical damage, and collision. Traditionally, the process of filing an auto 

insurance claim, as well as the rationale to accept one, is manually handled and 
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can be very different depending on the cause of damage, profile of the 

policyholder, and many other factors1. 

 According to an Insurance Information Institute study, claim frequency - 

number of claims per vehicle - as well as claim severity - average size of the claim 

- is in an increasing trend, e.g., property damage claim severity and frequency 

increased by 11.5% and 2.9% respectively for US auto-insurances in Q1 2014 – 

Q1 20162. Furthermore, US average expenditures for auto-insurance from 2009 to 

2015 is also in an increasing trend, reaching USD 889.01 by 2015 from USD 

786.65 in 2009 [1]. These result in need of a faster, reliable method to file auto-

insurance claims to be able to keep up with the increasing trends of claim severity 

and frequency. 

 Claim prediction is an important process in the insurance industry because the 

insurance company can prepare the right type of insurance policy for each 

potential policyholder. Inaccuracies in the prediction of vehicle insurance claims 

will raise the price of the insurance policy for the good driver and reduce the price 

of the policy for the driver who is not good. More accurate prediction capability 

allows the insurance industry to adjust pricing better and makes car insurance 

coverage more accessible to more drivers. 

 From machine learning point of view, the problem of claim prediction can be 

categorized as supervised learning [2, 3]. Given the historical claim data, we need 

to build a machine learning model that predict if a driver will initiate an auto 

insurance claim. The volume of the historical data is usually large. Moreover, 

there are many missing values for many features of the data. Therefore, we need 

machine learning models that can handle both data characteristics. There are some 

machine learning paradigms relevant in the big data, especially volume context. 

They include ensemble learning and online learning [4]. Ensemble learning 

combines multiple models of data chunk to obtain better accuracies than those 

obtained from any constituent model. Online learning uses data streams for 

training, and model can learn one instance at a time. 

 XGBoost is a new ensemble learning for classification problem. It is a novel 

gradient tree-boosting algorithm that offers efficient out-of-core learning and 

sparsity awareness [5]. The out-of-core learning is a set of algorithms processing 

data that cannot fit into the memory of a single computer, but that can easily fit 

into some data storage such as a local hard disk. Therefore, XGBoost is a 

supervised learning algorithm that should be very suitable for the problem of 

claim prediction. 

 In this paper, we apply and analyze the accuracy of XGBoost for the problem 

of claim prediction. We also compare the performance of XGBoost with that of 

another ensemble learning, i.e., AdaBoost, Stochastic GB, Random Forest, and 

                                                 
1 https://www.claimsjournal.com/news/national/2013/11/21/240353.htm 
2 https://www.iii.org/fact-statistic/facts-statistics-auto-insurance 
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online learning-based method, i.e., Neural Network [6]. Our simulations show that 

XGBoost gives better accuracies in term of normalized Gini than other methods. 

 The rest of the paper is organized as follows: In Section 2, the reviews of 

related works are presented. Section 3 describes the problem formulation or 

methodology. In Section 4, we discuss the results of simulations. Finally, we give 

the conclusion in Section 5. 

2     Related Work 

There have been several papers that tackled the problem of claim prediction using 

machine learning. Weerasinghe et al. compared which machine learning method 

performs best in predicting the claim size of a policyholder. They compared three 

machine learning method, i.e., neural networks, decision tree, and multinomial 

logistic regression. Their results indicated that neural networks were the best 

predictor [2]. To predict whether a policyholder files a claim or not, Smith et al. 

examined some machine learning methods such as decision tree and neural 

networks and discussed the impact of the case study on the insurance company 

[3].  

 The volume of the historical claim data is usually large. Moreover, there are 

many missing values for many features of the historical claim data. The above 

previous works did not consider both big volume and missing value issues in their 

works. Therefore, we focus on examining the machine learning methods that are 

the most suitable method for the problem of claim prediction with big training 

data and many missing values.   

2.1 Missing Values 

Datasets obtained from real-world resources such as claim data often contain 

missing values, intentional or not. Other examples are medical surveys and ad-

click data. Medical surveys may omit some fields that are deemed irrelevant to the 

respondent’s current condition, and an ad-click may fail to register into an ad-

click report because of blocked network traffic. 

 Some works propose imputation approaches for missing values on certain 

datasets. In [7], the authors propose an imputation measure for missing categorical 

values in a medical dataset, using concepts of similarity between a row whose 

missing values are removed and a subset of the dataset that contains no missing 

values, whose corresponding columns are removed. In [8], a K-means clustering 

method to impute missing data is proposed. First, the method creates clusters of 

complete instances. The method then iteratively imputes the missing values of 

instances using K-nearest neighbor method starting from instances with the least 

missing values to instances with the most missing values and updates the 

centroids of the clusters. A similar method of imputation is proposed in [9], where 

clusters of the whole dataset are made using K-means clustering method. Then, 

instances belonging in a cluster that contains missing values are imputed using a 
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kernel-based method taking values from instances in the same cluster that do not 

contain missing values. 

2.2     Big Data 

The large volume of data to consider in predicting whether a policyholder will 

claim or not has made the problem of claim prediction turns into big data 

paradigms. Regarding handle the large volume of data, some paradigms are 

usually used by machine learning, e.g., online learning and ensemble learning [4].  

 Online or incremental learning uses data streams for training, and model can 

learn one instance at a time [10]. This approach enables the processing of the large 

volume of data. A popular example of online learning based machine learning is 

neural networks.  

 Ensemble learning breaks the large volume of claim data into small ones, 

training models on a small subset, and combining results with high accuracy [11]. 

Decision tree is an example of averaging-based ensemble learning [12], while 

AdaBoost and stochastic gradient boosting are examples of boosting-based 

ensemble learning [6]. 

2.3     XGBoost 

Recently, a new boosting-based ensemble learning called XGBoost is proposed 

[5]. It is a novel gradient tree-boosting algorithm that offers efficient out-of-core 

learning and sparsity awareness. Therefore, XGBoost is a supervised learning 

algorithm that should be very suitable for the problem of claim prediction with big 

training data and missing values. The common previously used methods such as 

random forest and neural network still can not handle missing values. The 

methods need other mechanisms to handle the missing values. 

 The robustness of XGBoost results in increasing usages of the method in many 

other applications. As an example, Aler er al. utilizes XGBoost in the field of 

direct-diffuse solar radiation separation by creating two models [13]. This first 

model is an indirect model that uses XGBoost as a level-1 learner to learn from 

the result of conventional solar radiation separation models obtained from various 

literature sources fitted into a dataset. The second model is a direct model that 

directly fits XGboost into a dataset. Another example is in [14] that uses XGBoost 

to recommend items to a user in a recommender system, by using features 

extracted from a user-item pair using intricate feature engineering. In this paper, 

we examine XGBoost as a predictor for the problem of claim prediction.  

3      Claim Prediction as a Machine Learning Problem 

The goal of claim prediction is to predict the probability whether a policyholder 

files a claim or not given some information about policyholders. Let 𝑋  be a 

collection of instances 𝒙𝒊  that represent all the known information of the 𝑖 -th 

policyholder, and 𝑌 = {0,1}   be the possible output class, with 0, 1 being 



  

 

 

163                                                             The Accuracy of XGBoost for Insurance  

categorical values that represent ‘policyholder does not file claim’ and 

‘policyholder files claim’ respectively. Then, claim prediction seeks the 

probability pair 

(Pr(𝑌 = 0 | 𝑋 = 𝒙𝒊), Pr(𝑌 = 1 | 𝑋 = 𝒙𝒊)) 
where each probability is provided by a probability classifier, after being fitted to 

𝑋. In practice, we are only concerned on finding the second entry of said pair, 

which is the probability of the 𝑖-th policyholder filing a claim. Note that this does 

not result in any loss of generality, since there are only 2 possible output classes. 

 

3.1     Normalized Gini Coefficient as a Model Evaluation Metric 

Fitting a model to the dataset {(𝒙𝒊, 𝑦𝑖)| 1 ≤ 𝑖 ≤ 𝑛} creates a conditional predicted 

probability𝑓(𝒙), where 𝑓(𝒙𝒊) = Pr(𝑌 = 1 | 𝑋 = 𝒙𝒊). To evaluate the model, this 

paper will use normalized Gini coefficient as a model evaluation metric. Gini 

coefficient is originally used to calculate a nation’s inequality of income 

distribution 3 , but it was soon adapted into a model evaluation metric for 

classification problems, as it was found to be closely related to Receiving 

Operating Characteristic, another often-used metric for classification problems 

[15]. One of the possible methods to calculate normalized Gini coefficient for a 

binary classification problem where the classes are defined as ‘0’s and ‘1’s, of 

which claim prediction falls into, is described below. 

Given a target variable vector 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇where 𝑦𝑖 ∈ {0,1}, 1 ≤ 𝑖 ≤ 𝑛 is 

the correct class of the 𝑖-th observation and a predicted probability vector 𝒇(𝒙) =
[𝑓(𝒙𝟏), 𝑓(𝒙𝟐), … , 𝑓(𝒙𝒏)]𝑇  where 𝑓(𝒙𝒊), 1 ≤ 𝑖 ≤ 𝑛  is the predicted probability 

that the 𝑖-th instance will fall into the class ‘1’ obtained from a classification 

algorithm (e.g., logistic regression) fitted to a dataset  {(𝒙𝒊, 𝑦𝑖)|   1 ≤ 𝑖 ≤ 𝑛} , we 

first sort 𝒇(𝒙) in a descending order, then uses said sorting rule to shuffle 𝒚 into 

vector 𝒚′ = [𝑦1′, 𝑦2′, … , 𝑦𝑛′]𝑇 . If 𝑋 is the amount of iteration needed to bubble-

sort 𝒚′ into 𝒚, 𝑐𝑙𝑖 is the amount of observations in 𝒚 that are of class ‘i’, then 

𝑌 =
𝑐𝑙0 ∗ 𝑐𝑙1

2
 

𝑛𝐺 =
𝑌 − 𝑋

𝑌
 

where 𝑛𝐺 is the normalized Gini coefficient for the said fitted model4. Note that if 

the algorithm is a random guess, then  𝑋 = 𝑌, which would result in 𝑛𝐺 = 0,  and 

if the algorithm gives a 100% correct prediction for each 𝒙𝒊, then 𝑋 = 0, which 

would result in 𝑛𝐺 = 1. 

3.2     Characterization of Missing Values  

A real-life dataset for certain domains often contain missing values, and this is no 

different for claim prediction. Missing values in this domain may be caused by 

optional fields in the insurance policy that the policyholder may skip, mandatory 

                                                 
3 http://hdr.undp.org/en/content/income-gini-coefficient. 
4 https://www.kaggle.com/batzner/gini-coefficient-an-intuitive-explanation 
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fields that the policyholder forgot to fill before the dataset is distributed, removal 

of noise from the dataset as an early form of data preprocessing. Based on the 

mechanism of the missing values, there are three types of missing values: missing 

completely at random (MCAR), missing at random (MAR), and missing not at 

random (MNAR) [16]. While one can remove the observations that have missing 

values in them, this approach becomes less appropriate as the number of 

observations with missing values increases since there are fewer observations for 

the model to train with. There have been studies regarding the various approaches 

to imputing missing values in datasets, whether by statistical methods [17, 18] or 

by machine learning methods [19, 20, 21], but this ignores the possibility that the 

missing value was on purpose as well as introducing possible bias to the dataset. 

In response, some machine learning methods that can learn despite missing values 

in the dataset have been developed [5, 13, 14]. This paper will use methods 

developed at [5]. 

4      XGBoost 

XGBoost is a novel gradient tree boosting method introduced by Chen and 

Guestrin [5]. It first applies a set of Classification and Regression Trees (also 

known as CART) as weak learners and then boosts the performance of the trees 

by creating an ensemble of trees that minimize a regularized objective function. 

The algorithm introduced concepts such as sparsity-aware split finding in each 

tree, cache-friendly approximate algorithms to determine splitting points, and 

efficient out-of-core calculation to the methods of gradient tree boosting to create 

an algorithm with very fast computational speed while maintaining good 

prediction ability.  

Given a dataset {𝑫, 𝒚} and 𝑝 CARTs 𝑓(𝒙) as weak learners, the ensemble 𝐹0(𝒙) 

first includes a weak learner 𝑓0(𝒙) that learns from the original dataset. Then, the 

ensemble sequentially adds weak learners that learn from the residual of the 

previous ensemble. If 𝑡 > 0, 𝑡 ∈ 𝑁 is the 𝑡-th boosting round, then the ensemble 

𝐹𝑡(𝒙) at the 𝑡-th boosting round is 

 

𝐹𝑡(𝒙) = ∑ 𝑓𝑖(𝒙)

𝑡

𝑖=0

 

 

 

 

(1) 

where 𝑓𝑡(𝒙)  learns from the residuals of 𝐹𝑡−1(𝒙) , and is the learner that 

greedily minimizes an objective function 𝐿𝑡, where 

𝐿𝑡 = ∑ 𝑙(𝑦𝑖, 𝐹𝑡−1(

𝑛

𝑖=1

𝒙𝒊) + 𝑓𝑡(𝒙𝒊)) + Ω(𝑓𝑡) 

Ω(𝑓𝑡) = 𝛾𝑇 +
𝜆‖𝑤‖2

2
 

 

 

(2) 
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where 𝑙 is a differentiable complex loss function between the 𝑖-th outcome 𝑦𝑖 and 

the (𝑡 − 1) -th ensemble’s predicted 𝑖 -th outcome 𝐹𝑡−1(𝒙𝒊) , and Ω(𝑓𝑡)  is a 

function that penalizes tree complexity, with 𝑇, 𝑤 as the amount of leaves and 

sum of all leaf weights respectively, and 𝛾, 𝜆 respectively are the regularization 

and minimum loss hyperparameters of XGBoost. 

As with gradient tree boosting machine learning algorithms, XGBoost can 

(locally, in a given ensemble) calculate the importance of variables in a dataset 

[15, 24]. Given a variable V in a CART, the improvement I(V) of a variable that 

splits a parent node P into child nodes L, R, of which 𝑞 is the fraction of paths that 

pass-through L is defined by 

 

𝐼(𝑉) = 𝐸(𝑃) − (𝑞𝐸(𝐿) − (1 − 𝑞)𝐸(𝑅)) 

 

 

(3) 

where 𝐸(𝐾) is the weighted squared errors of node 𝐾. Importance of a variable in 

an ensemble is defined as the average of improvement of said variable of all trees 

in the ensemble. 

One of the novelties introduced by XGBoost is the ability to set a default 

direction in each node of its CART in the form of a split finding algorithm. Given 

the observations in a node, the algorithm first collects all observations whose 

value for a feature is not missing in a set 𝐼, then calculate the gain obtained from 

splitting to the left and right for every observations in  𝐼 . It then stores the 

maximum split direction and the gain from splitting in said direction from all 

observations in 𝐼 as the optimal values for the feature. The process is repeated for 

every feature, and the default direction is obtained by taking the direction that 

gives the optimal value from all features. Every observation whose value for the 

feature that is used for the current node’s splitting rule will go to the default 

direction. 

5      Experiments and Results  

5.1     Dataset 

To build and evaluate the claim predictor, we use publicly available datasets from 

Porto Seguro through Kaggle5.  The training data is used to build a model as a 

predictor of probabilities a person will file a claim next year. Using the testing 

data, we estimate the accuracy of the model. Some elementary data information 

from these datasets are: 

 There are 595212 observations in the training dataset and 892816 observations 

in the testing dataset 

 There are 57 features and a binary label that is ‘0’ for ‘does not file a claim’ 

and ‘1’ for ‘files claim’ 

                                                 
5 https://www.kaggle.com/c/porto-seguro-safe- driver-prediction 
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 Out of all values in the label, only 6% are ‘1’s. This means that the resulting 

model will be very prone of overfitting. 

 Feature titles follow the format ‘ps_(group)_(n-th feature  from 

group)_(none/bin/cat)’, where the groups are ‘ind’ (individual) features, ‘car’ 

(car) features, ‘reg’ (region) features, and ‘calc’ (calculated values) features. 

Features that are binary or categorical are given the tag _bin or _cat after the 

feature number. For example, ps_ind_03_cat is the third feature from the 

individual feature group, whose entries are of categorical values. The semi-

black box nature of the features  

 There are massive amounts of NaN values in the dataset, totaling at 846458 

NaN values for training dataset and 1270295 NaN values for the testing 

dataset. Some features, such as ‘ps_ind_03_cat’ has 1028142 NaN values in 

training and testing dataset combined. Fortunately, XGBoost can handle 

missing values, preventing the need to impute missing values, which would 

introduce noticeable bias in the data considering the amount of NaNs 

5.2     Feature selection 

The semi-black box nature of the dataset (where the exact meaning of each feature 

is not known, but some characteristics of the features are known) made feature 

engineering as well as intuitive feature selection hard to approach, and as such 

feature selection has to be done by more traditional means. In exploring the 

dataset, the following charts will be used: 

 A barplot for all integer-valued features between values and ‘does not claim’ 

percentage 

 A 10-bin histogram for all float valued features between values and ‘does not 

claim’ percentage 

 A heatmap of pairwise correlation between features 

 A barplot of correlation between features and target. 

Feature selection is made based on the insights gained from the charts above, as well 

as the pairwise correlations between independent features and the target column and the 

average of absolute pairwise correlation values between a feature and all other features of 

the dataset. In particular, features that show little correlation to the target column and low 

pairwise correlation to other features will not be considered into the model. 

The feature selection process filters 24 features from the original 57 features to be 

further used for the model. In detail, 

 All features (20 in total) in the calc group either have low feature-target 

correlation or low pairwise correlation to other features, including other 

features on the same calc group. 

 The other four features not included in the model (ps_ind_10/11/13_bin, 

ps_car_10_cat) have low feature-target correlation and low pairwise 

correlation to other features, thus making it a candidate for deletion. 
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5.3     Model Fitting, Hyperparameter Tuning, and Results 

A preliminary XGBoost classifier is trained to the post-feature selection dataset, 

then is subject to a 6-stage grid search scheme, each grid search scheme utilizing 

five cross-validation folds, where each stage optimizes different 

hyperparameter(s). In detail, 

 1st grid search stage optimizes 𝑝, the amount of CART trees contained in the 

XGBoost ensemble model 

 2nd grid search stage optimizes max_depth, the maximum depth of a single 

CART tree, and min_child_weight, the minimum sum of instance weight in a 

tree-child required to induce a split 

 3rd grid search stage optimizes subsample and colsample_bytree, the 

subsampling ratio of the dataset required to grow CART trees and the 

subsampling ratio of columns in said subsampled dataset used to construct 

each tree respectively 

 4th grid search stage optimizes 𝛼 and 𝜆, the L1 and L2 regularization term on 

weights of the new features obtained from every boosting round. 

 5th grid search stage optimizes scale_pos_weight, a parameter used to scale the 

weights of positive observations to pick the CART trees that correctly predicts 

positive observations, and learning_rate, the ratio of which feature weights 

obtained after each boosting rounds are scaled by to shorten boosting round 

times. 

 6th grid search stage optimizes 𝛾, the minimum loss reduction required for a 

leaf in a CART tree to split. 

 (0th stage is the preliminary XGBoost model) 

At each stage, the classifier is updated using the result of that stage’s grid 

search. A custom evaluation metric to calculate normalized Gini coefficient is 

passed as an evaluation metric for the training process of every classifier. All 

classifiers share some hyperparameters, namely objective (‘binary:logistic’; 

classifies every sample into either ‘0’s or ‘1’s), seed (27; the random number 

generator seed), and n_thread (6; the amount of CPU cores used in the learning 

process), and end up having the same learning_rate (0.1). The full list of the 

hyperparameters of each classifier is given in Table 1 and Table 2. 

Five-fold cross-validation is done to get the normalized Gini coefficient of the 

training dataset, as well as to provide prediction probabilities of the testing dataset 

to be uploaded to Kaggle for evaluation purposes, which returns normalized Gini 

coefficients of a fixed 70% and 30% partitions of the testing dataset, set by 

Kaggle. The normalized Gini coefficients of the training and both partitions of the 

testing dataset are given in Table 3. 

 

Table 1: Hyperparameters of each XGBoost classifier 

Classifier min_child_weight 𝑝 max_depth 𝛾 subsample 

xgb0 1 500 5 0 0.8 

xgb1 1 119 5 1 0.8 



 

 

 

 

 

 

 

Fauzan et al.                                                                                                     168 

xgb2 6 119 4 1 0.8 

xgb3 6 119 4 1 0.75 

xgb4 6 119 4 1 0.75 

xgb5 6 119 4 1 0.75 

xgb6 6 119 4 1 0.75 

 

Table 2: Hyperparameters of each XGBoost classifier (cont.) 

Classifier colsample_bytree scale 𝛼 𝜆 

xgb0 0.8 1 0 1 

xgb1 0.8 1 2 8 

xgb2 0.8 1 2 8 

xgb3 0.65 1 2 8 

xgb4 0.65 1 1.1 6 

xgb5 0.65 1.9 1.1 6 

xgb6 0.65 1.9 1.1 6 

 

Table 3: Normalized Gini coefficient results of each classifier 

Classifier Train Test (70% ) Test (30%) 

xgb0 0.27935 0.26250 0.25124 

xgb1 0.27963 0.27932 0.27005 

xgb2 0.27981 0.28434 0.27860 

xgb3 0.27993 0.28422 0.27993 

xgb4 0.28023 0.28455 0.27981 

xgb5 0.28113 0.28518 0.28043 

xgb6 0.28113 0.28518 0.28043 

 

For comparison purposes, we use two boosting-based ensemble learnings, i.e., 

AdaBoost and Stochastic GB, an averaging-based ensemble learning, i.e., 

Random Forest, and online learning, i.e., Neural Network. Since these methods 

cannot handle missing values, missing values in both training and testing dataset 

will be filled using the following imputing strategy: 

 Missing values in features with binary values will be filled by the value of its 

median 

 Missing values in features with integer values will be filled by the rounded 

value of its mean 

 Missing values in features with float values features will be filled by the value 

of its mean 

The model selection of all comparison models uses a similar grid-search 

scheme with XGBoost, suited accordingly for the hyperparameter optimization of 

each model. Table 4 shows the best results of XGBoost and other comparison 

methods. 

Table 4 shows that XGBoost outperforms other methods on both testing 

datasets. From Table 4, we also see that neural network give better accuracies than 

random forest which consists of some decision trees. These results relate to the 
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previous comparison in [2] that showed that neural network gave better accuracies 

than decision tree.  

The results in Table 4 also show that Stochastic GB gives similar scores with 

XGBoost on the training dataset. Since Stochastic GB has the same underlying 

methods with XGBoost and Stochastic GB learns from the imputed data whereas 

XGBoost learns from the unimputed data, this may imply that the imputing 

strategy works well, at least for the training dataset. AdaBoost is also had a 

similar underlying method with XGBoost. However, the differences between their 

methods of creating weak learners may be the reason why their Gini coefficients 

differ quite much. The weak learners of XGBoost learn from the residuals of the 

previous ensemble of weak learners, whereas weak learners of AdaBoost learn 

from the weighted dataset, whose weights are updated from the previous ensemble 

of weak learners [23]. 

 

Table 4: Normalized Gini coefficient results of each method 

Classifier Train Test (70%) Test (30%) 

XGBoost 0.28113 0.28518 0.28043 

AdaBoost 0.2687 0.27271 0.26896  

Stochastic GB 0.28139 0.28499 0.27977 

Random Forest 0.25841 0.25933 0.25402 

Neural Network 0.28023 0.28455 0.27981 

 

6      Conclusion  

Claim prediction is an important process in the insurance industry. The volume of 

the historical claim data is usually large. Moreover, there are many missing values 

for many features of the data. Therefore, we need machine learning models that 

can handle both data characteristics. In this paper, we apply and analyze the 

accuracy of new ensemble learning called XGBoost for the problem of claim 

prediction. We also compare the performance of XGBoost with that of another 

ensemble learning, i.e., AdaBoost, Stochastic GB, Random Forest, and online 

learning-based method, i.e., Neural Network. Our simulations show that XGBoost 

gives better accuracies in term of normalized Gini than other methods. 
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