
Int. J. Advance Soft Compu. Appl, Vol. 10, No. 2, July 2018

ISSN 2074-8523

The Accuracy of XGBoost for Insurance

Claim Prediction

Muhammad Arief Fauzan1, Hendri Murfi1

1Department of Mathematics, Universitas Indonesia

muhammad.arief52@sci.ui.ac.id, hendri@ui.ac.id

Abstract

 The increasing trend of claim frequency and claim severity for
auto-insurance result in need of methods to quickly file claims while
maintaining accuracy. One of them is machine learning that treats
the problem as supervised learning. The volume of the historical
claim data is usually large. Moreover, there are many missing values
for many features of the data. Therefore, we need machine learning
models that can handle both data characteristics. XGBoost is a new
ensemble learning that should be very suitable for both data
characteristics. In this paper, we apply and analyze the accuracy of
XGBoost for the problem of claim prediction. We also compare the
performance of XGBoost with that of another ensemble learning,
i.e., AdaBoost, Stochastic GB, Random Forest, and online learning-
based method, i.e., Neural Network. Our simulations show that
XGBoost gives better accuracies in term of normalized Gini than
other methods.

 Keywords claim prediction, large volume, missing values, ensemble learning,

XGBoost

1 Introduction

Auto-insurance claim is a request for financial coverage caused by automobile-

related loss or sustained damage from a policyholder. An auto-insurance provides

coverage of bodily injury, property damage, personal injury, comprehensive

physical damage, and collision. Traditionally, the process of filing an auto

insurance claim, as well as the rationale to accept one, is manually handled and

Fauzan et al. 160

can be very different depending on the cause of damage, profile of the

policyholder, and many other factors1.

 According to an Insurance Information Institute study, claim frequency -

number of claims per vehicle - as well as claim severity - average size of the claim

- is in an increasing trend, e.g., property damage claim severity and frequency

increased by 11.5% and 2.9% respectively for US auto-insurances in Q1 2014 –

Q1 20162. Furthermore, US average expenditures for auto-insurance from 2009 to

2015 is also in an increasing trend, reaching USD 889.01 by 2015 from USD

786.65 in 2009 [1]. These result in need of a faster, reliable method to file auto-

insurance claims to be able to keep up with the increasing trends of claim severity

and frequency.

 Claim prediction is an important process in the insurance industry because the

insurance company can prepare the right type of insurance policy for each

potential policyholder. Inaccuracies in the prediction of vehicle insurance claims

will raise the price of the insurance policy for the good driver and reduce the price

of the policy for the driver who is not good. More accurate prediction capability

allows the insurance industry to adjust pricing better and makes car insurance

coverage more accessible to more drivers.

 From machine learning point of view, the problem of claim prediction can be

categorized as supervised learning [2, 3]. Given the historical claim data, we need

to build a machine learning model that predict if a driver will initiate an auto

insurance claim. The volume of the historical data is usually large. Moreover,

there are many missing values for many features of the data. Therefore, we need

machine learning models that can handle both data characteristics. There are some

machine learning paradigms relevant in the big data, especially volume context.

They include ensemble learning and online learning [4]. Ensemble learning

combines multiple models of data chunk to obtain better accuracies than those

obtained from any constituent model. Online learning uses data streams for

training, and model can learn one instance at a time.

 XGBoost is a new ensemble learning for classification problem. It is a novel

gradient tree-boosting algorithm that offers efficient out-of-core learning and

sparsity awareness [5]. The out-of-core learning is a set of algorithms processing

data that cannot fit into the memory of a single computer, but that can easily fit

into some data storage such as a local hard disk. Therefore, XGBoost is a

supervised learning algorithm that should be very suitable for the problem of

claim prediction.

 In this paper, we apply and analyze the accuracy of XGBoost for the problem

of claim prediction. We also compare the performance of XGBoost with that of

another ensemble learning, i.e., AdaBoost, Stochastic GB, Random Forest, and

1 https://www.claimsjournal.com/news/national/2013/11/21/240353.htm
2 https://www.iii.org/fact-statistic/facts-statistics-auto-insurance

161 The Accuracy of XGBoost for Insurance

online learning-based method, i.e., Neural Network [6]. Our simulations show that

XGBoost gives better accuracies in term of normalized Gini than other methods.

 The rest of the paper is organized as follows: In Section 2, the reviews of

related works are presented. Section 3 describes the problem formulation or

methodology. In Section 4, we discuss the results of simulations. Finally, we give

the conclusion in Section 5.

2 Related Work

There have been several papers that tackled the problem of claim prediction using

machine learning. Weerasinghe et al. compared which machine learning method

performs best in predicting the claim size of a policyholder. They compared three

machine learning method, i.e., neural networks, decision tree, and multinomial

logistic regression. Their results indicated that neural networks were the best

predictor [2]. To predict whether a policyholder files a claim or not, Smith et al.

examined some machine learning methods such as decision tree and neural

networks and discussed the impact of the case study on the insurance company

[3].

 The volume of the historical claim data is usually large. Moreover, there are

many missing values for many features of the historical claim data. The above

previous works did not consider both big volume and missing value issues in their

works. Therefore, we focus on examining the machine learning methods that are

the most suitable method for the problem of claim prediction with big training

data and many missing values.

2.1 Missing Values

Datasets obtained from real-world resources such as claim data often contain

missing values, intentional or not. Other examples are medical surveys and ad-

click data. Medical surveys may omit some fields that are deemed irrelevant to the

respondent’s current condition, and an ad-click may fail to register into an ad-

click report because of blocked network traffic.

 Some works propose imputation approaches for missing values on certain

datasets. In [7], the authors propose an imputation measure for missing categorical

values in a medical dataset, using concepts of similarity between a row whose

missing values are removed and a subset of the dataset that contains no missing

values, whose corresponding columns are removed. In [8], a K-means clustering

method to impute missing data is proposed. First, the method creates clusters of

complete instances. The method then iteratively imputes the missing values of

instances using K-nearest neighbor method starting from instances with the least

missing values to instances with the most missing values and updates the

centroids of the clusters. A similar method of imputation is proposed in [9], where

clusters of the whole dataset are made using K-means clustering method. Then,

instances belonging in a cluster that contains missing values are imputed using a

Fauzan et al. 162

kernel-based method taking values from instances in the same cluster that do not

contain missing values.

2.2 Big Data

The large volume of data to consider in predicting whether a policyholder will

claim or not has made the problem of claim prediction turns into big data

paradigms. Regarding handle the large volume of data, some paradigms are

usually used by machine learning, e.g., online learning and ensemble learning [4].

 Online or incremental learning uses data streams for training, and model can

learn one instance at a time [10]. This approach enables the processing of the large

volume of data. A popular example of online learning based machine learning is

neural networks.

 Ensemble learning breaks the large volume of claim data into small ones,

training models on a small subset, and combining results with high accuracy [11].

Decision tree is an example of averaging-based ensemble learning [12], while

AdaBoost and stochastic gradient boosting are examples of boosting-based

ensemble learning [6].

2.3 XGBoost

Recently, a new boosting-based ensemble learning called XGBoost is proposed

[5]. It is a novel gradient tree-boosting algorithm that offers efficient out-of-core

learning and sparsity awareness. Therefore, XGBoost is a supervised learning

algorithm that should be very suitable for the problem of claim prediction with big

training data and missing values. The common previously used methods such as

random forest and neural network still can not handle missing values. The

methods need other mechanisms to handle the missing values.

 The robustness of XGBoost results in increasing usages of the method in many

other applications. As an example, Aler er al. utilizes XGBoost in the field of

direct-diffuse solar radiation separation by creating two models [13]. This first

model is an indirect model that uses XGBoost as a level-1 learner to learn from

the result of conventional solar radiation separation models obtained from various

literature sources fitted into a dataset. The second model is a direct model that

directly fits XGboost into a dataset. Another example is in [14] that uses XGBoost

to recommend items to a user in a recommender system, by using features

extracted from a user-item pair using intricate feature engineering. In this paper,

we examine XGBoost as a predictor for the problem of claim prediction.

3 Claim Prediction as a Machine Learning Problem

The goal of claim prediction is to predict the probability whether a policyholder

files a claim or not given some information about policyholders. Let 𝑋 be a

collection of instances 𝒙𝒊 that represent all the known information of the 𝑖 -th

policyholder, and 𝑌 = {0,1} be the possible output class, with 0, 1 being

163 The Accuracy of XGBoost for Insurance

categorical values that represent ‘policyholder does not file claim’ and

‘policyholder files claim’ respectively. Then, claim prediction seeks the

probability pair

(Pr(𝑌 = 0 | 𝑋 = 𝒙𝒊), Pr(𝑌 = 1 | 𝑋 = 𝒙𝒊))
where each probability is provided by a probability classifier, after being fitted to

𝑋. In practice, we are only concerned on finding the second entry of said pair,

which is the probability of the 𝑖-th policyholder filing a claim. Note that this does

not result in any loss of generality, since there are only 2 possible output classes.

3.1 Normalized Gini Coefficient as a Model Evaluation Metric

Fitting a model to the dataset {(𝒙𝒊, 𝑦𝑖)| 1 ≤ 𝑖 ≤ 𝑛} creates a conditional predicted

probability𝑓(𝒙), where 𝑓(𝒙𝒊) = Pr(𝑌 = 1 | 𝑋 = 𝒙𝒊). To evaluate the model, this

paper will use normalized Gini coefficient as a model evaluation metric. Gini

coefficient is originally used to calculate a nation’s inequality of income

distribution 3 , but it was soon adapted into a model evaluation metric for

classification problems, as it was found to be closely related to Receiving

Operating Characteristic, another often-used metric for classification problems

[15]. One of the possible methods to calculate normalized Gini coefficient for a

binary classification problem where the classes are defined as ‘0’s and ‘1’s, of

which claim prediction falls into, is described below.

Given a target variable vector 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇where 𝑦𝑖 ∈ {0,1}, 1 ≤ 𝑖 ≤ 𝑛 is

the correct class of the 𝑖-th observation and a predicted probability vector 𝒇(𝒙) =
[𝑓(𝒙𝟏), 𝑓(𝒙𝟐), … , 𝑓(𝒙𝒏)]𝑇 where 𝑓(𝒙𝒊), 1 ≤ 𝑖 ≤ 𝑛 is the predicted probability

that the 𝑖-th instance will fall into the class ‘1’ obtained from a classification

algorithm (e.g., logistic regression) fitted to a dataset {(𝒙𝒊, 𝑦𝑖)| 1 ≤ 𝑖 ≤ 𝑛} , we

first sort 𝒇(𝒙) in a descending order, then uses said sorting rule to shuffle 𝒚 into

vector 𝒚′ = [𝑦1′, 𝑦2′, … , 𝑦𝑛′]𝑇 . If 𝑋 is the amount of iteration needed to bubble-

sort 𝒚′ into 𝒚, 𝑐𝑙𝑖 is the amount of observations in 𝒚 that are of class ‘i’, then

𝑌 =
𝑐𝑙0 ∗ 𝑐𝑙1

2

𝑛𝐺 =
𝑌 − 𝑋

𝑌

where 𝑛𝐺 is the normalized Gini coefficient for the said fitted model4. Note that if

the algorithm is a random guess, then 𝑋 = 𝑌, which would result in 𝑛𝐺 = 0, and

if the algorithm gives a 100% correct prediction for each 𝒙𝒊, then 𝑋 = 0, which

would result in 𝑛𝐺 = 1.

3.2 Characterization of Missing Values

A real-life dataset for certain domains often contain missing values, and this is no

different for claim prediction. Missing values in this domain may be caused by

optional fields in the insurance policy that the policyholder may skip, mandatory

3 http://hdr.undp.org/en/content/income-gini-coefficient.
4 https://www.kaggle.com/batzner/gini-coefficient-an-intuitive-explanation

Fauzan et al. 164

fields that the policyholder forgot to fill before the dataset is distributed, removal

of noise from the dataset as an early form of data preprocessing. Based on the

mechanism of the missing values, there are three types of missing values: missing

completely at random (MCAR), missing at random (MAR), and missing not at

random (MNAR) [16]. While one can remove the observations that have missing

values in them, this approach becomes less appropriate as the number of

observations with missing values increases since there are fewer observations for

the model to train with. There have been studies regarding the various approaches

to imputing missing values in datasets, whether by statistical methods [17, 18] or

by machine learning methods [19, 20, 21], but this ignores the possibility that the

missing value was on purpose as well as introducing possible bias to the dataset.

In response, some machine learning methods that can learn despite missing values

in the dataset have been developed [5, 13, 14]. This paper will use methods

developed at [5].

4 XGBoost

XGBoost is a novel gradient tree boosting method introduced by Chen and

Guestrin [5]. It first applies a set of Classification and Regression Trees (also

known as CART) as weak learners and then boosts the performance of the trees

by creating an ensemble of trees that minimize a regularized objective function.

The algorithm introduced concepts such as sparsity-aware split finding in each

tree, cache-friendly approximate algorithms to determine splitting points, and

efficient out-of-core calculation to the methods of gradient tree boosting to create

an algorithm with very fast computational speed while maintaining good

prediction ability.

Given a dataset {𝑫, 𝒚} and 𝑝 CARTs 𝑓(𝒙) as weak learners, the ensemble 𝐹0(𝒙)

first includes a weak learner 𝑓0(𝒙) that learns from the original dataset. Then, the

ensemble sequentially adds weak learners that learn from the residual of the

previous ensemble. If 𝑡 > 0, 𝑡 ∈ 𝑁 is the 𝑡-th boosting round, then the ensemble

𝐹𝑡(𝒙) at the 𝑡-th boosting round is

𝐹𝑡(𝒙) = ∑ 𝑓𝑖(𝒙)

𝑡

𝑖=0

(1)

where 𝑓𝑡(𝒙) learns from the residuals of 𝐹𝑡−1(𝒙) , and is the learner that

greedily minimizes an objective function 𝐿𝑡, where

𝐿𝑡 = ∑ 𝑙(𝑦𝑖, 𝐹𝑡−1(

𝑛

𝑖=1

𝒙𝒊) + 𝑓𝑡(𝒙𝒊)) + Ω(𝑓𝑡)

Ω(𝑓𝑡) = 𝛾𝑇 +
𝜆‖𝑤‖2

2

(2)

165 The Accuracy of XGBoost for Insurance

where 𝑙 is a differentiable complex loss function between the 𝑖-th outcome 𝑦𝑖 and

the (𝑡 − 1) -th ensemble’s predicted 𝑖 -th outcome 𝐹𝑡−1(𝒙𝒊) , and Ω(𝑓𝑡) is a

function that penalizes tree complexity, with 𝑇, 𝑤 as the amount of leaves and

sum of all leaf weights respectively, and 𝛾, 𝜆 respectively are the regularization

and minimum loss hyperparameters of XGBoost.

As with gradient tree boosting machine learning algorithms, XGBoost can

(locally, in a given ensemble) calculate the importance of variables in a dataset

[15, 24]. Given a variable V in a CART, the improvement I(V) of a variable that

splits a parent node P into child nodes L, R, of which 𝑞 is the fraction of paths that

pass-through L is defined by

𝐼(𝑉) = 𝐸(𝑃) − (𝑞𝐸(𝐿) − (1 − 𝑞)𝐸(𝑅))

(3)

where 𝐸(𝐾) is the weighted squared errors of node 𝐾. Importance of a variable in

an ensemble is defined as the average of improvement of said variable of all trees

in the ensemble.

One of the novelties introduced by XGBoost is the ability to set a default

direction in each node of its CART in the form of a split finding algorithm. Given

the observations in a node, the algorithm first collects all observations whose

value for a feature is not missing in a set 𝐼, then calculate the gain obtained from

splitting to the left and right for every observations in 𝐼 . It then stores the

maximum split direction and the gain from splitting in said direction from all

observations in 𝐼 as the optimal values for the feature. The process is repeated for

every feature, and the default direction is obtained by taking the direction that

gives the optimal value from all features. Every observation whose value for the

feature that is used for the current node’s splitting rule will go to the default

direction.

5 Experiments and Results

5.1 Dataset

To build and evaluate the claim predictor, we use publicly available datasets from

Porto Seguro through Kaggle5. The training data is used to build a model as a

predictor of probabilities a person will file a claim next year. Using the testing

data, we estimate the accuracy of the model. Some elementary data information

from these datasets are:

 There are 595212 observations in the training dataset and 892816 observations

in the testing dataset

 There are 57 features and a binary label that is ‘0’ for ‘does not file a claim’

and ‘1’ for ‘files claim’

5 https://www.kaggle.com/c/porto-seguro-safe- driver-prediction

Fauzan et al. 166

 Out of all values in the label, only 6% are ‘1’s. This means that the resulting

model will be very prone of overfitting.

 Feature titles follow the format ‘ps_(group)_(n-th feature from

group)_(none/bin/cat)’, where the groups are ‘ind’ (individual) features, ‘car’

(car) features, ‘reg’ (region) features, and ‘calc’ (calculated values) features.

Features that are binary or categorical are given the tag _bin or _cat after the

feature number. For example, ps_ind_03_cat is the third feature from the

individual feature group, whose entries are of categorical values. The semi-

black box nature of the features

 There are massive amounts of NaN values in the dataset, totaling at 846458

NaN values for training dataset and 1270295 NaN values for the testing

dataset. Some features, such as ‘ps_ind_03_cat’ has 1028142 NaN values in

training and testing dataset combined. Fortunately, XGBoost can handle

missing values, preventing the need to impute missing values, which would

introduce noticeable bias in the data considering the amount of NaNs

5.2 Feature selection

The semi-black box nature of the dataset (where the exact meaning of each feature

is not known, but some characteristics of the features are known) made feature

engineering as well as intuitive feature selection hard to approach, and as such

feature selection has to be done by more traditional means. In exploring the

dataset, the following charts will be used:

 A barplot for all integer-valued features between values and ‘does not claim’

percentage

 A 10-bin histogram for all float valued features between values and ‘does not

claim’ percentage

 A heatmap of pairwise correlation between features

 A barplot of correlation between features and target.

Feature selection is made based on the insights gained from the charts above, as well

as the pairwise correlations between independent features and the target column and the

average of absolute pairwise correlation values between a feature and all other features of

the dataset. In particular, features that show little correlation to the target column and low

pairwise correlation to other features will not be considered into the model.

The feature selection process filters 24 features from the original 57 features to be

further used for the model. In detail,

 All features (20 in total) in the calc group either have low feature-target

correlation or low pairwise correlation to other features, including other

features on the same calc group.

 The other four features not included in the model (ps_ind_10/11/13_bin,

ps_car_10_cat) have low feature-target correlation and low pairwise

correlation to other features, thus making it a candidate for deletion.

167 The Accuracy of XGBoost for Insurance

5.3 Model Fitting, Hyperparameter Tuning, and Results

A preliminary XGBoost classifier is trained to the post-feature selection dataset,

then is subject to a 6-stage grid search scheme, each grid search scheme utilizing

five cross-validation folds, where each stage optimizes different

hyperparameter(s). In detail,

 1st grid search stage optimizes 𝑝, the amount of CART trees contained in the

XGBoost ensemble model

 2nd grid search stage optimizes max_depth, the maximum depth of a single

CART tree, and min_child_weight, the minimum sum of instance weight in a

tree-child required to induce a split

 3rd grid search stage optimizes subsample and colsample_bytree, the

subsampling ratio of the dataset required to grow CART trees and the

subsampling ratio of columns in said subsampled dataset used to construct

each tree respectively

 4th grid search stage optimizes 𝛼 and 𝜆, the L1 and L2 regularization term on

weights of the new features obtained from every boosting round.

 5th grid search stage optimizes scale_pos_weight, a parameter used to scale the

weights of positive observations to pick the CART trees that correctly predicts

positive observations, and learning_rate, the ratio of which feature weights

obtained after each boosting rounds are scaled by to shorten boosting round

times.

 6th grid search stage optimizes 𝛾, the minimum loss reduction required for a

leaf in a CART tree to split.

 (0th stage is the preliminary XGBoost model)

At each stage, the classifier is updated using the result of that stage’s grid

search. A custom evaluation metric to calculate normalized Gini coefficient is

passed as an evaluation metric for the training process of every classifier. All

classifiers share some hyperparameters, namely objective (‘binary:logistic’;

classifies every sample into either ‘0’s or ‘1’s), seed (27; the random number

generator seed), and n_thread (6; the amount of CPU cores used in the learning

process), and end up having the same learning_rate (0.1). The full list of the

hyperparameters of each classifier is given in Table 1 and Table 2.

Five-fold cross-validation is done to get the normalized Gini coefficient of the

training dataset, as well as to provide prediction probabilities of the testing dataset

to be uploaded to Kaggle for evaluation purposes, which returns normalized Gini

coefficients of a fixed 70% and 30% partitions of the testing dataset, set by

Kaggle. The normalized Gini coefficients of the training and both partitions of the

testing dataset are given in Table 3.

Table 1: Hyperparameters of each XGBoost classifier

Classifier min_child_weight 𝑝 max_depth 𝛾 subsample

xgb0 1 500 5 0 0.8

xgb1 1 119 5 1 0.8

Fauzan et al. 168

xgb2 6 119 4 1 0.8

xgb3 6 119 4 1 0.75

xgb4 6 119 4 1 0.75

xgb5 6 119 4 1 0.75

xgb6 6 119 4 1 0.75

Table 2: Hyperparameters of each XGBoost classifier (cont.)

Classifier colsample_bytree scale 𝛼 𝜆

xgb0 0.8 1 0 1

xgb1 0.8 1 2 8

xgb2 0.8 1 2 8

xgb3 0.65 1 2 8

xgb4 0.65 1 1.1 6

xgb5 0.65 1.9 1.1 6

xgb6 0.65 1.9 1.1 6

Table 3: Normalized Gini coefficient results of each classifier

Classifier Train Test (70%) Test (30%)

xgb0 0.27935 0.26250 0.25124

xgb1 0.27963 0.27932 0.27005

xgb2 0.27981 0.28434 0.27860

xgb3 0.27993 0.28422 0.27993

xgb4 0.28023 0.28455 0.27981

xgb5 0.28113 0.28518 0.28043

xgb6 0.28113 0.28518 0.28043

For comparison purposes, we use two boosting-based ensemble learnings, i.e.,

AdaBoost and Stochastic GB, an averaging-based ensemble learning, i.e.,

Random Forest, and online learning, i.e., Neural Network. Since these methods

cannot handle missing values, missing values in both training and testing dataset

will be filled using the following imputing strategy:

 Missing values in features with binary values will be filled by the value of its

median

 Missing values in features with integer values will be filled by the rounded

value of its mean

 Missing values in features with float values features will be filled by the value

of its mean

The model selection of all comparison models uses a similar grid-search

scheme with XGBoost, suited accordingly for the hyperparameter optimization of

each model. Table 4 shows the best results of XGBoost and other comparison

methods.

Table 4 shows that XGBoost outperforms other methods on both testing

datasets. From Table 4, we also see that neural network give better accuracies than

random forest which consists of some decision trees. These results relate to the

169 The Accuracy of XGBoost for Insurance

previous comparison in [2] that showed that neural network gave better accuracies

than decision tree.

The results in Table 4 also show that Stochastic GB gives similar scores with

XGBoost on the training dataset. Since Stochastic GB has the same underlying

methods with XGBoost and Stochastic GB learns from the imputed data whereas

XGBoost learns from the unimputed data, this may imply that the imputing

strategy works well, at least for the training dataset. AdaBoost is also had a

similar underlying method with XGBoost. However, the differences between their

methods of creating weak learners may be the reason why their Gini coefficients

differ quite much. The weak learners of XGBoost learn from the residuals of the

previous ensemble of weak learners, whereas weak learners of AdaBoost learn

from the weighted dataset, whose weights are updated from the previous ensemble

of weak learners [23].

Table 4: Normalized Gini coefficient results of each method

Classifier Train Test (70%) Test (30%)

XGBoost 0.28113 0.28518 0.28043

AdaBoost 0.2687 0.27271 0.26896

Stochastic GB 0.28139 0.28499 0.27977

Random Forest 0.25841 0.25933 0.25402

Neural Network 0.28023 0.28455 0.27981

6 Conclusion

Claim prediction is an important process in the insurance industry. The volume of

the historical claim data is usually large. Moreover, there are many missing values

for many features of the data. Therefore, we need machine learning models that

can handle both data characteristics. In this paper, we apply and analyze the

accuracy of new ensemble learning called XGBoost for the problem of claim

prediction. We also compare the performance of XGBoost with that of another

ensemble learning, i.e., AdaBoost, Stochastic GB, Random Forest, and online

learning-based method, i.e., Neural Network. Our simulations show that XGBoost

gives better accuracies in term of normalized Gini than other methods.

ACKNOWLEDGMENTS
This work was supported by Universitas Indonesia under PITTA 2018 grant. Any

opinions, findings, and conclusions or recommendations are the authors' and do

not necessarily reflect those of the sponsor.

Fauzan et al. 170

References

[1] Hartwig, R.P., Lynch, J., Weisbart, S. (2016). More Accidents, Larger Claims

Drive Costs Higher. Insurance Information Institute, New York.

[2] Weerasinghe, K.P.M.L.P., Wijegunasekara, M.C. (2016). A Comparative

Study of Data Mining Algorithms in the Prediction of Auto Insurance Claims.

In European International Journal of Science and Technology, vol. 5 no. 1, pp.

47-54

[3] Smith, K. A., Willis, R. J. (2017). An analysis of customer retention and

insurance claim patterns using data mining: a case study. In Journal of the

Operational Research Society, vol. 51, pp. 532-541

[4] L’heureux, A., Grolinger, K., Carrets, M. A. M. (2017). Machine Learning

with Big Data: Challenges and Approaches. IEEE Access, vol. 5, pp. 7776-

7796.

[5] Chen, T., Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In

Knowledge Discovery and Data Mining, 22nd ACM SIGKDD Conference on

(pp. 785-794)

[6] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York:

Springer

[7] Bai, B. M., Mangathayaru, N., Rani, B.P. (2015). An approach to Find

Missing Values in Medical Datasets. In Engineering and MIS, 2015, ICEMIS

2015, The International Conference on (article no. 70), ACM.

[8] Gajawada, S., Toshniwal, D. (2012). Missing Value Imputation Method Based

on Clustering and Nearest Neighbours. In International Journal of Future

Computer and Communication, vol. 1, no. 2, pp. 206-208.

[9] Zhang, S., Zhang, J., Zhu, X., Qin, Y., Zhang, C. (2008). Missing Value

Imputation Based on Data Clustering. In Gavrilova M.L., Tan C.J.K. (eds)

Transactions on Computational Science I. Lecture Notes in Computer Science.

Springer. Berlin, Heidelberg.

[10] Fong, S., Luo, Z. (2013). Incremental Learning Algorithms for Fast

Classification in Data Stream. In Computational and Business Intelligence,

2013. 2013 International Symposium on (pp. 186-190). IEEE.

[11] Dietterich, T. (2000). Ensemble Method in Machine Learning. Multiple

Classifier System, vol. 1857. Springer, London.

[12] Genuer, R., Poggi, J.-M., Tuleau-Malot, C., Villa-Vialaneix, N. (2017).

Random Forest for Big Data. Big Data Research, vol. 9, pp. 28-46.

[13] Aler, R., Galván, I.M., Ruiz-Arias, J.A., Gueymard, C.A. (2017). Improving

the separation of direct and diffuse solar radiation components using machine

learning by gradient boosting. In Solar Energy vol. 150, pp. 558-569.

171 The Accuracy of XGBoost for Insurance

[14] Volkovs, M., Yu, G. W., Poutanen, T. (2017). Content-based neighbor models

for cold start in recommender systems. In Recommender Systems Challenge

2017, RecSys Challenge ’17, Proceedings, article no. 7.

[15] Hand, D.J., Till, R.J. (2001). A Simple Generalization of the Area Under the

ROC Curve for Multiple Class Classification Problems. In Machine Learning,

vol. 45, no. 2, pp. 171-186.

[16] Little, R.J.A., Rubin, D.B. (2014). Missing-data Patterns. In Statistical

Analysis with Missing Data (pp. 4-10). John Wiley & Sons, New Jersey.

[17] Tsai, C-F., Li, M-L., Lin, W-C. (2018). A class center-based approach for

missing value imputation. In Knowledge-Based Systems, vol. 151, pp. 124-

135.

[18] Zhang, Z. (2016). Missing data imputation: focusing on single imputation. In

Annals of Translational Medicine, vol. 4, article 9.

[19] Deb, R., Wee-Chung, A. (2016). Missing value imputation for the analysis of

incomplete traffic accident data. In Information Sciences, vol. 339, pp. 274-

289.

[20] Ramezani, R., Maadi, M., Khatami, S.M. (2017). A novel hybrid intelligent

system with missing value imputation for diabetes diagnosis. In Alexandria

Engineering Journal (in press).

[21] Liu, Z-G., Pan, Q., Dezert, J., Martin, A. (2016). Adaptive imputation of

missing values for incomplete pattern classification. In Pattern Recognition,

vol. 52, pp. 85-95.

[22] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting

machine. In Annals of statistics, vol 29 no. 5, pp. 1189-1232.

[23] Freund, Y., Schapire, R.E. (1999). A short introduction on boosting. In

Journal of Japanese Society for Artificial Intelligence, vol. 14, pp. 771 – 780

